论文标题
Breachradar:自动检测副业
BreachRadar: Automatic Detection of Points-of-Compromise
论文作者
论文摘要
银行交易欺诈导致全球银行,商人和卡持有人的年度损失超过$ 13B。这种欺诈的大部分始于副业点(数据泄露或掠夺操作),该信用卡和借记卡数字信息被盗,转售,然后用于执行欺诈。我们介绍了此问题,并提出了自动启发点(POC)检测程序。 Breachradar是一种分布式交替的算法,它分配了被妥协到不同位置的概率。我们使用Apache Spark实现此方法,并在计算机和交易的数量中显示其线性可扩展性。 Breachradar应用于具有数十亿个真实交易记录和欺诈标签的两个数据集,其中我们提供了我们能够检测到的真实副业的多个示例。当在其中一个数据集中注入副突出点时,我们进一步显示了我们方法的有效性,同时达到了90%以上的精度,并且当只有10%的卡是欺诈的受害者时。
Bank transaction fraud results in over $13B annual losses for banks, merchants, and card holders worldwide. Much of this fraud starts with a Point-of-Compromise (a data breach or a skimming operation) where credit and debit card digital information is stolen, resold, and later used to perform fraud. We introduce this problem and present an automatic Points-of-Compromise (POC) detection procedure. BreachRadar is a distributed alternating algorithm that assigns a probability of being compromised to the different possible locations. We implement this method using Apache Spark and show its linear scalability in the number of machines and transactions. BreachRadar is applied to two datasets with billions of real transaction records and fraud labels where we provide multiple examples of real Points-of-Compromise we are able to detect. We further show the effectiveness of our method when injecting Points-of-Compromise in one of these datasets, simultaneously achieving over 90% precision and recall when only 10% of the cards have been victims of fraud.