论文标题

(扭曲的差异)非阿布尔共同体中的角色图

The character map in (twisted differential) non-abelian cohomology

论文作者

Fiorenza, Domenico, Sati, Hisham, Schreiber, Urs

论文摘要

我们将Chern特征扩展到K-Theory上的概括,以概括为Chern-dold特征在广义的共同体学理论上,进一步延伸到(扭曲的,差异)非阿布莱恩的共同体学理论,其中其目标是非亚洲DE RHAM共同的共同体,是扭曲的L------------- l-infinity l-Infinity Algebra估算差异差异的形式。该构建相当于利用DG代数有理同义理论的基本定理,以扭曲的DE RHAM定理的非 - 亚伯利亚概括。我们表明,非亚伯语角色除了Chern-dold角色外,还复制了Chern-Weil同质性以及其次要的Cheeger-Simons对(差异)非亚伯利亚共同学的同态同构,在1级中,以原理套件(与连接)表示。因此,将所有这些都推广到更高(扭曲的,差异)的非亚伯式同胞,以较高的束/更高的Gerbes表示(具有较高的连接)。作为一个基本示例,我们讨论了8个模型上的扭曲共同体理论的扭曲的非亚洲角色图,这可以看作是4级拓扑模块化形式(TMF)的扭曲的非亚伯利亚增强。事实证明,这证明了在高能量物理学中列出了高级拓扑的列表,这些拓扑是在高度的拓扑范围内被认为是柔和的量化量量量的,并且是柔和的量化。

We extend the Chern character on K-theory, in its generalization to the Chern-Dold character on generalized cohomology theories, further to (twisted, differential) non-abelian cohomology theories, where its target is a non-abelian de Rham cohomology of twisted L-infinity algebra valued differential forms. The construction amounts to leveraging the fundamental theorem of dg-algebraic rational homotopy theory to a twisted non-abelian generalization of the de Rham theorem. We show that the non-abelian character reproduces, besides the Chern-Dold character, also the Chern-Weil homomorphism as well as its secondary Cheeger-Simons homomorphism on (differential) non-abelian cohomology in degree 1, represented by principal bundles (with connection); and thus generalizes all these to higher (twisted, differential) non-abelian cohomology, represented by higher bundles/higher gerbes (with higher connections). As a fundamental example, we discuss the twisted non-abelian character map on twistorial Cohomotopy theory over 8-manifolds, which can be viewed as a twisted non-abelian enhancement of topological modular forms (tmf) in degree 4. This turns out to exhibit a list of subtle topological relations that in high energy physics are thought to govern the charge quantization of fluxes in M-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源