论文标题
用表面工程TI3C2 MXENES硅的界面强度变化
Variation in interface strength of Silicon with surface engineered Ti3C2 MXenes
论文作者
论文摘要
电池技术的当前进步需要电极将高性能活性材料(例如硅(SI))与二维材料(例如过渡金属碳化物(MXENES))相结合,以延长周期稳定性和增强的电化学性能。更重要的是,这是这些材料之间的界面,这是其应用成功的联系。本文中,由于使用第一原理计算更改了MXENE表面官能团(TX),因此确定了无定形Si和Ti3c2tx Mxene之间的界面强度变化。 Si与具有表面-OH,-OH和-O混合和-f官能团的三个TI3C2 MXENE底物连接。密度功能理论(DFT)结果表明,完全羟基化的Ti3c2的界面强度为0.6 j/m2,其具有无定形SI。随着表面-O和-F组的比例增加,该界面强度值会下降。提供对界面上电子重新分布和电荷分离的附加分析,以完全理解影响表面化学和结果界面强度值的潜在物理化学因素。对界面的综合分析旨在通过其靶向的表面工程来开发基于MXENE的复杂电极。
Current advancements in battery technologies require electrodes to combine high-performance active material such as Silicon (Si) with two-dimensional materials such as transition metal carbides (MXenes) for prolonged cycle stability and enhanced electrochemical performance. More so, it is the interface between these materials, which is the nexus for their applicatory success. Herein, the interface strength variations between amorphous Si and Ti3C2Tx MXene are determined as the MXene surface functional groups (Tx) are changed using first principle calculations. Si is interfaced with three Ti3C2 MXene substrates having surface -OH, -OH and -O mixed, and -F functional groups. Density functional theory (DFT) results reveal that completely hydroxylated Ti3C2 has the highest interface strength of 0.6 J/m2 with amorphous Si. This interface strength value drops as the proportion of surface -O and -F groups increases. Additional analysis of electron redistribution and charge separation across the interface is provided for a complete understanding of underlying physico-chemical factors affecting the surface chemistry and resultant interface strength values. The presented comprehensive analysis of the interface aims to develop sophisticated MXene based electrodes by their targeted surface engineering.