论文标题
领带网络上传染病的流行阈值
Epidemic Thresholds of Infectious Diseases on Tie-Decay Networks
论文作者
论文摘要
在网络上传染病的研究中,研究人员计算了流行阈值,以帮助预测疾病是否最终会感染大量人群的一部分。由于网络结构通常会在时间上发生变化,这从根本上影响了它们在它们上的扩散过程的动态,进而影响疾病传播的流行性阈值,因此检查时间网络中的流行性阈值很重要。时间网络中对流行阈值的大多数研究都集中在离散时间的模型上,但是大多数现实世界中的网络系统会随着时间的及时而不断发展。在我们的工作中,我们通过研究易感性(可感染的(SIS)过程)的流行性阈值来编码网络的连续时间依赖性,通过研究扎赛网络上的SIS模型。我们得出了该模型的流行阈值条件,并执行数值实验来验证它。我们还研究了不同因素 - 网络中扎带强度的衰减系数,节点之间的相互作用频率以及发生相互作用的基础社交网络的稀疏性 - - 导致阈值的临界值降低或增加,并有助于促进或阻碍疾病的传播。因此,我们证明了领带网络的特征如何改变疾病扩散的结果。
In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether a disease will eventually infect a large fraction of a population. Because network structure typically changes in time, which fundamentally influences the dynamics of spreading processes on them and in turn affects epidemic thresholds for disease propagation, it is important to examine epidemic thresholds in temporal networks. Most existing studies of epidemic thresholds in temporal networks have focused on models in discrete time, but most real-world networked systems evolve continuously in time. In our work, we encode the continuous time-dependence of networks into the evaluation of the epidemic threshold of a susceptible--infected--susceptible (SIS) process by studying an SIS model on tie-decay networks. We derive the epidemic-threshold condition of this model, and we perform numerical experiments to verify it. We also examine how different factors---the decay coefficients of the tie strengths in a network, the frequency of interactions between nodes, and the sparsity of the underlying social network in which interactions occur---lead to decreases or increases of the critical values of the threshold and hence contribute to facilitating or impeding the spread of a disease. We thereby demonstrate how the features of tie-decay networks alter the outcome of disease spread.