论文标题

VATLD:一种视觉分析系统,用于评估,理解和改善交通光检测

VATLD: A Visual Analytics System to Assess, Understand and Improve Traffic Light Detection

论文作者

Gou, Liang, Zou, Lincan, Li, Nanxiang, Hofmann, Michael, Shekar, Arvind Kumar, Wendt, Axel, Ren, Liu

论文摘要

交通信号灯检测对于自动驾驶中的环境感知和决策至关重要。最先进的探测器建立在深度卷积神经网络(CNN)的基础上,并表现出了有希望的表现。但是,对基于CNN的检测器的一个迫在眉睫的关注是如何在将其部署到自动驾驶汽车上之前彻底评估准确性和鲁棒性的性能。在这项工作中,我们提出了一个视觉分析系统VATLD,该系统配备了分离的表示和语义对抗性学习,以评估,理解和提高自动驾驶应用中交通灯检测器的准确性和鲁棒性。分散的表示学习提取了数据语义,以通过人类友好的视觉摘要来增强人类认知,而语义对抗性学习有效地暴露了可解释的鲁棒性风险,并为可行的见解提供了最小的人类互动。我们还展示了通过视觉分析系统(VATLD)从可行的见解中得出的各种绩效改进策略的有效性,并说明了对自动驾驶中安全至关重要的应用的一些实际影响。

Traffic light detection is crucial for environment perception and decision-making in autonomous driving. State-of-the-art detectors are built upon deep Convolutional Neural Networks (CNNs) and have exhibited promising performance. However, one looming concern with CNN based detectors is how to thoroughly evaluate the performance of accuracy and robustness before they can be deployed to autonomous vehicles. In this work, we propose a visual analytics system, VATLD, equipped with a disentangled representation learning and semantic adversarial learning, to assess, understand, and improve the accuracy and robustness of traffic light detectors in autonomous driving applications. The disentangled representation learning extracts data semantics to augment human cognition with human-friendly visual summarization, and the semantic adversarial learning efficiently exposes interpretable robustness risks and enables minimal human interaction for actionable insights. We also demonstrate the effectiveness of various performance improvement strategies derived from actionable insights with our visual analytics system, VATLD, and illustrate some practical implications for safety-critical applications in autonomous driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源