论文标题
用于研究多嵌段共聚物融化动力学过程的动态自洽场方法
Dynamic self-consistent field approach for studying kinetic processes in multiblock copolymer melts
论文作者
论文摘要
自洽场理论是在介质水平研究平衡(CO)聚合物系统的流行且非常成功的理论框架。动态密度函数允许人们使用此框架来研究扩散性,非惯性制度中的动态过程。这些方法中的中心数量是迁移率函数,它描述了链连通性对单体对热力学驱动场非本地反应的影响。在最近的一项研究[Mantha等,大分子53,3409(2020)]中,我们开发了一种方法来系统地从参考细粒模拟中构建迁移率函数。在这里,我们专注于Rouse制度中线性链的融化,并显示如何对具有任意序列的多块共聚物进行半分析计算迁移率,而无需求模拟。在这种情况下,得出了单链动态结构因子的准确近似表达。讨论了几个限制制度。然后,我们将所得的密度功能理论应用于瞬时淬灭后,在两长度尺度块共聚物系统中研究排序过程。确定了订购过程中不同的动力学制度:在早期,短尺度上的排序占主导地位;在后期,较大尺度上的订购接管了。对于大淬火深度,系统不一定会放松到真正的平衡状态。我们的密度功能方法可用于淬灭协议的计算机辅助设计,以创建新颖的非平衡材料。
The self-consistent field theory is a popular and highly successful theoretical framework for studying equilibrium (co)polymer systems at the mesoscopic level. Dynamic density functionals allow one to use this framework for studying dynamical processes in the diffusive, non-inertial regime. The central quantity in these approaches is the mobility function, which describes the effect of chain connectivity on the nonlocal response of monomers to thermodynamic driving fields. In a recent study [Mantha et al, Macromolecules 53, 3409 (2020)], we have developed a method to systematically construct mobility functions from reference fine-grained simulations. Here we focus on melts of linear chains in the Rouse regime and show how the mobility functions can be calculated semi-analytically for multiblock copolymers with arbitrary sequences without resorting to simulations. In this context, an accurate approximate expression for the single-chain dynamic structure factor is derived. Several limiting regimes are discussed. Then we apply the resulting density functional theory to study ordering processes in a two-length scale block copolymer system after instantaneous quenches into the ordered phase. Different dynamical regimes in the ordering process are identified: At early times, the ordering on short scales dominates; at late times, the ordering on larger scales takes over. For large quench depths, the system does not necessarily relax into the true equilibrium state. Our density functional approach could be used for the computer-assisted design of quenching protocols in order to create novel nonequilibrium materials.