论文标题

基于梯度的块坐标下降算法的收敛,用于非正交关节矩阵的对角线化

Convergence of gradient-based block coordinate descent algorithms for non-orthogonal joint approximate diagonalization of matrices

论文作者

Li, Jianze, Usevich, Konstantin, Comon, Pierre

论文摘要

在本文中,我们提出了一个基于梯度的块坐标下降(BCD-G)框架,以解决在复杂的Stiefel歧管和特殊线性基团的乘积上定义的矩阵的近似对角线化。我们选择基于Riemannian梯度的块优化而不是循环方式。为了更新复杂的Stiefel歧管中的第一个块变量,我们使用众所周知的线搜索下降方法。为了基于四种不同的基本变换来更新特殊线性组中的第二个块变量,我们构建了三个类:GLU,GQU和GU,然后获得三个BCD-G算法:BCD-GLU,BCD-GQU,BCD-GQU和BCD-GU。在迭代元素是有限的假设下,我们使用lojasiewicz梯度不等式建立了这三种算法的全局和弱收敛性。我们还提出了一个基于梯度的Jacobi型框架,以解决特殊线性组定义的矩阵的关节对角线。就像在BCD-G情况下一样,使用GLU和GQU类别的基本转换类别,我们专注于Jacobi-Glu和Jacobi-GQU算法,并建立其全球和弱收敛性。本文所述的所有算法和收敛结果也适用于实际情况。

In this paper, we propose a gradient-based block coordinate descent (BCD-G) framework to solve the joint approximate diagonalization of matrices defined on the product of the complex Stiefel manifold and the special linear group. Instead of the cyclic fashion, we choose a block optimization based on the Riemannian gradient. To update the first block variable in the complex Stiefel manifold, we use the well-known line search descent method. To update the second block variable in the special linear group, based on four kinds of different elementary transformations, we construct three classes: GLU, GQU and GU, and then get three BCD-G algorithms: BCD-GLU, BCD-GQU and BCD-GU. We establish the global and weak convergence of these three algorithms using the Łojasiewicz gradient inequality under the assumption that the iterates are bounded. We also propose a gradient-based Jacobi-type framework to solve the joint approximate diagonalization of matrices defined on the special linear group. As in the BCD-G case, using the GLU and GQU classes of elementary transformations, we focus on the Jacobi-GLU and Jacobi-GQU algorithms and establish their global and weak convergence. All the algorithms and convergence results described in this paper also apply to the real case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源