论文标题

通过分层gans的异常检测和采样成本控制

Anomaly Detection and Sampling Cost Control via Hierarchical GANs

论文作者

Zhong, Chen, Gursoy, M. Cenk, Velipasalar, Senem

论文摘要

异常检测会导致某些抽样和感测成本,因此在检测准确性和这些成本之间取得平衡至关重要。在这项工作中,我们通过考虑随机时间序列中阈值交叉的检测而在不了解其统计数据的情况下研究异常检测。为了降低此检测过程中的采样成本,我们提出使用分层生成对抗网络(GAN)进行不均匀采样。为了提高检测准确性并减少检测的延迟,我们在建议的基于GAN的检测器的操作中引入了一个缓冲区。在实验中,我们考虑了检测延迟,错过率,平均误差成本和采样比的指标,分析了提出的层次GAN检测器的性能。我们将性能的权衡确定为缓冲区大小和层次结构中的GAN水平的数量。我们还将绩效与采样策略的性能进行了比较,该策略将在随机过程的参数下大致最大程度地减少采样和错误成本的总和。我们证明,所提出的基于GAN的检测器可以在检测延迟和平均误差成本和更大的缓冲区区域的平均误差成本方面取得显着改善,但以提高采样率的成本。

Anomaly detection incurs certain sampling and sensing costs and therefore it is of great importance to strike a balance between the detection accuracy and these costs. In this work, we study anomaly detection by considering the detection of threshold crossings in a stochastic time series without the knowledge of its statistics. To reduce the sampling cost in this detection process, we propose the use of hierarchical generative adversarial networks (GANs) to perform nonuniform sampling. In order to improve the detection accuracy and reduce the delay in detection, we introduce a buffer zone in the operation of the proposed GAN-based detector. In the experiments, we analyze the performance of the proposed hierarchical GAN detector considering the metrics of detection delay, miss rates, average cost of error, and sampling ratio. We identify the tradeoffs in the performance as the buffer zone sizes and the number of GAN levels in the hierarchy vary. We also compare the performance with that of a sampling policy that approximately minimizes the sum of average costs of sampling and error given the parameters of the stochastic process. We demonstrate that the proposed GAN-based detector can have significant performance improvements in terms of detection delay and average cost of error with a larger buffer zone but at the cost of increased sampling rates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源