论文标题

$ p_ {k+2} $多边形和多边形的多项式起重操作员

A $P_{k+2}$ polynomial lifting operator on polygons and polyhedrons

论文作者

Ye, Xiu, Zhang, Shangyou

论文摘要

$ p_ {k+2} $多项式起重操作员在多边形和多面体上定义。它将不连续的多项式在多边形/多面体内部提升到一件式$ p_ {k+2} $多项式。使用此提升操作员,我们证明了较弱的Galerkin有限元解决方案,在此提升之后,以高于最佳订单的两个订单收敛,均以$ l^2 $和$ h^1 $ norms的规范收敛。该理论通过2D和3D泊松方程的数值解确认。

A $P_{k+2}$ polynomial lifting operator is defined on polygons and polyhedrons. It lifts discontinuous polynomials inside the polygon/polyhedron and on the faces to a one-piece $P_{k+2}$ polynomial. With this lifting operator, we prove that the weak Galerkin finite element solution, after this lifting, converges at two orders higher than the optimal order, in both $L^2$ and $H^1$ norms. The theory is confirmed by numerical solutions of 2D and 3D Poisson equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源