论文标题

MPG-NET:多预测指导网络,用于在OCT图像中分割视网膜层

MPG-Net: Multi-Prediction Guided Network for Segmentation of Retinal Layers in OCT Images

论文作者

Fu, Zeyu, Sun, Yang, Zhang, Xiangyu, Stainton, Scott, Barney, Shaun, Hogg, Jeffry, Innes, William, Dlay, Satnam

论文摘要

光学相干断层扫描(OCT)是提取高分辨率视网膜信息的普遍方法。此外,对自动视网膜层分割的需求不断增长,这有助于视网膜疾病诊断。在本文中,我们提出了一个新型的多次引导注意网络(MPG-NET),以在OCT图像中进行自动视网膜层分割。提出的方法包括两个主要步骤,以增强U形完全卷积网络(FCN)的判别能力,以进行可靠的自动分割。首先,在编码器中利用功能通道自适应地重量重量的功能改进模块,以捕获不相关区域中更有用的功能和丢弃信息。此外,我们提出了一种多预测引导的注意机制,该机制提供了像素的语义预测指导,以更好地在每个尺度上恢复分割掩码。这种机制将深入的监督转化为受监督的注意力,能够指导特征聚合,并在中间层之间使用更多语义信息。公开可用的Duke OCT数据集的实验证实了该方法的有效性,以及对其他最新方法的性能的改善。

Optical coherence tomography (OCT) is a commonly-used method of extracting high resolution retinal information. Moreover there is an increasing demand for the automated retinal layer segmentation which facilitates the retinal disease diagnosis. In this paper, we propose a novel multiprediction guided attention network (MPG-Net) for automated retinal layer segmentation in OCT images. The proposed method consists of two major steps to strengthen the discriminative power of a U-shape Fully convolutional network (FCN) for reliable automated segmentation. Firstly, the feature refinement module which adaptively re-weights the feature channels is exploited in the encoder to capture more informative features and discard information in irrelevant regions. Furthermore, we propose a multi-prediction guided attention mechanism which provides pixel-wise semantic prediction guidance to better recover the segmentation mask at each scale. This mechanism which transforms the deep supervision to supervised attention is able to guide feature aggregation with more semantic information between intermediate layers. Experiments on the publicly available Duke OCT dataset confirm the effectiveness of the proposed method as well as an improved performance over other state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源