论文标题
体内:新颖对象字幕的视觉词汇预训练
VIVO: Visual Vocabulary Pre-Training for Novel Object Captioning
论文作者
论文摘要
生成图像标题可以描述可以描述在标题标记的训练数据中看不见的新物体的图像标题是非常理想但又具有挑战性的,这是在新颖的对象字幕挑战(NOCAPS)中评估的功能。在这一挑战中,除了科科的标题外,没有其他图像启动训练数据可用于模型培训。因此,无法应用常规视力语言预训练(VLP)方法。本文介绍了在没有标题注释的情况下进行预训练的视觉词汇预审前(Vivo)。通过打破VLP中配对的图像捕获训练数据的依赖性,Vivo可以利用大量的配对图像标签数据来学习视觉词汇。这是通过预先训练多层变压器模型来完成的,该模型学会了将图像级标签与相应的图像区域特征对齐。为了解决图像标签的无序性质,Vivo使用匈牙利的匹配损失,并带有蒙版标签预测进行预训练。我们通过微调预训练的模型以进行图像字幕来验证体内的有效性。此外,我们对模型推断的视觉文本对齐进行分析。结果表明,我们的模型不仅可以生成描述新物体的流利图像标题,还可以识别这些对象的位置。我们的单一模型已在NOCAPS上取得了新的最新结果,并超过了人类苹果酒评分。
It is highly desirable yet challenging to generate image captions that can describe novel objects which are unseen in caption-labeled training data, a capability that is evaluated in the novel object captioning challenge (nocaps). In this challenge, no additional image-caption training data, other thanCOCO Captions, is allowed for model training. Thus, conventional Vision-Language Pre-training (VLP) methods cannot be applied. This paper presents VIsual VOcabulary pretraining (VIVO) that performs pre-training in the absence of caption annotations. By breaking the dependency of paired image-caption training data in VLP, VIVO can leverage large amounts of paired image-tag data to learn a visual vocabulary. This is done by pre-training a multi-layer Transformer model that learns to align image-level tags with their corresponding image region features. To address the unordered nature of image tags, VIVO uses a Hungarian matching loss with masked tag prediction to conduct pre-training. We validate the effectiveness of VIVO by fine-tuning the pre-trained model for image captioning. In addition, we perform an analysis of the visual-text alignment inferred by our model. The results show that our model can not only generate fluent image captions that describe novel objects, but also identify the locations of these objects. Our single model has achieved new state-of-the-art results on nocaps and surpassed the human CIDEr score.