论文标题

SARM:稀疏的自回旋模型,用于粒子物理学中可扩展生成稀疏图像的稀疏模型

SARM: Sparse Autoregressive Model for Scalable Generation of Sparse Images in Particle Physics

论文作者

Lu, Yadong, Collado, Julian, Whiteson, Daniel, Baldi, Pierre

论文摘要

模拟数据的生成对于粒子物理学的数据分析至关重要,但是当前的蒙特卡洛方法在计算上非常昂贵。基于深度学习的生成模型已成功地以较低的成本生成了模拟数据,但是当数据非常稀疏时挣扎。我们介绍了一种新颖的深稀疏自回旋模型(SARM),该模型(SARM)以可拖动的可能性明确地学习数据的稀疏性,与生成性的对抗网络(GAN)和其他方法相比,它使其更稳定和可解释。在两个案例研究中,我们将SARM与GAN模型和非SPARSE自回归模型进行了比较。作为性能的定量度量,我们在生成的图像和训练图像上计算的物理量分布之间计算了Wasserstein距离($ W_P $)。在第一项研究中,SARM以零价值为零的喷气机的图像,其中90%的像素为$ W_P $得分的图像比其他最先进的生成模型获得的分数好24-52%。在第二项研究中,关于98%像素的兆次图像的量热计图像为零,SARM的图像产生了$ W_P $得分的图像,分数要好得多66-68%。用其他指标做出的类似观察结果证实了SARM对粒子物理学稀疏数据的有用性。原始数据和软件将在从物理Web门户网站中接受手稿后获得:http://mlphysics.ics.ics.uci.edu/。

Generation of simulated data is essential for data analysis in particle physics, but current Monte Carlo methods are very computationally expensive. Deep-learning-based generative models have successfully generated simulated data at lower cost, but struggle when the data are very sparse. We introduce a novel deep sparse autoregressive model (SARM) that explicitly learns the sparseness of the data with a tractable likelihood, making it more stable and interpretable when compared to Generative Adversarial Networks (GANs) and other methods. In two case studies, we compare SARM to a GAN model and a non-sparse autoregressive model. As a quantitative measure of performance, we compute the Wasserstein distance ($W_p$) between the distributions of physical quantities calculated on the generated images and on the training images. In the first study, featuring images of jets in which 90% of the pixels are zero-valued, SARM produces images with $W_p$ scores that are 24-52% better than the scores obtained with other state-of-the-art generative models. In the second study, on calorimeter images in the vicinity of muons where 98% of the pixels are zero-valued, SARM produces images with $W_p$ scores that are 66-68% better. Similar observations made with other metrics confirm the usefulness of SARM for sparse data in particle physics. Original data and software will be made available upon acceptance of the manuscript from the UCI Machine Learning in Physics web portal at: http://mlphysics.ics.uci.edu/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源