论文标题
单孔的散射幅度:成对小组和成对的螺旋性
Scattering Amplitudes for Monopoles: Pairwise Little Group and Pairwise Helicity
论文作者
论文摘要
壳上的方法特别适合探索电气和磁性物体的散射,对于该物体,没有局部和洛伦兹不变的Lagrangian描述。在本文中,我们展示了如何构造洛伦兹 - 不变的s-矩阵,以散射电和磁性的颗粒,而无需参考狄拉克字符串。关键要素是对我们对庞加莱集团多粒子表示的基本理解的修订。出乎意料的是,用于电磁散射的渐近状态具有附加的小组相变,与成对的电气和磁充电颗粒有关。对于每个电荷 - 单键孔对,用量化的“跨产品”($ e_1 g_2 -e_2 g_1 $)识别相应的“成对螺旋度”,代表存储在渐近电磁场中的额外角动量。我们定义了一种新型的成对旋转螺旋变量,它是电磁散射幅度的附加构建块。然后,我们构建了最通用的3点S-Matrix元素,以及$ 2 \ 2 $ Fermion-Monopole S-Matrix的全部波浪分解。特别是,我们在最低的部分波中得出了著名的螺旋性翻转,这是广义自旋选择规则的简单结果,以及对较高部分波的全部角度依赖性。我们的施工为内壳计划提供了重大的新成就,在拉格朗日描述到目前为止失败的地方取得了成功。
On-shell methods are particularly suited for exploring the scattering of electrically and magnetically charged objects, for which there is no local and Lorentz invariant Lagrangian description. In this paper we show how to construct a Lorentz-invariant S-matrix for the scattering of electrically and magnetically charged particles, without ever having to refer to a Dirac string. A key ingredient is a revision of our fundamental understanding of multi-particle representations of the Poincaré group. Surprisingly, the asymptotic states for electric-magnetic scattering transform with an additional little group phase, associated with pairs of electrically and magnetically charged particles. The corresponding "pairwise helicity" is identified with the quantized "cross product" of charges, $e_1 g_2 - e_2 g_1$, for every charge-monopole pair, and represents the extra angular momentum stored in the asymptotic electromagnetic field. We define a new kind of pairwise spinor-helicity variable, which serves as an additional building block for electric-magnetic scattering amplitudes. We then construct the most general 3-point S-matrix elements, as well as the full partial wave decomposition for the $2\to 2$ fermion-monopole S-matrix. In particular, we derive the famous helicity flip in the lowest partial wave as a simple consequence of a generalized spin-helicity selection rule, as well as the full angular dependence for the higher partial waves. Our construction provides a significant new achievement for the on-shell program, succeeding where the Lagrangian description has so far failed.