论文标题
与超电原子的热电器的相互作用逆转
Interaction-Assisted Reversal of Thermopower with Ultracold Atoms
论文作者
论文摘要
我们研究了中性的效率原子的热电流,这些原子穿过介质通道,该通道连接了超级流体过渡的热储层。热电响应是由密度驱动的从冷到热储层的扩散与有利于能量从热到冷的传输的通道之间的竞争。我们使用几乎非相互作用和强烈相互作用的系统中的外部光势来控制两种贡献对热电响应的相对强度。如果没有相互作用,则可以在广泛范围内调谐粒子电流的大小,但仅限于我们的参数状态中的热流到冷。令人惊讶的是,强颗粒间相互作用另外逆转了电流的方向。我们定量地对非相互作用的观测值进行了定量模拟,并通过减少由于配对相关性而导致的熵传输来解释与相互作用辅助的逆转。我们的工作铺平了使用与冷原子的自旋依赖的光学技术在密切相关物质中自旋和热量的耦合的方法。
We study thermoelectric currents of neutral, fermionic atoms flowing through a mesoscopic channel connecting a hot and a cold reservoir across the superfluid transition. The thermoelectric response results from a competition between density-driven diffusion from the cold to the hot reservoir and the channel favoring transport of energetic particles from hot to cold. We control the relative strength of both contributions to the thermoelectric response using an external optical potential in a nearly non-interacting and a strongly-interacting system. Without interactions, the magnitude of the particle current can be tuned over a broad range but is restricted to flow from hot to cold in our parameter regime. Strikingly, strong interparticle interactions additionally reverse the direction of the current. We quantitatively model ab initio the non-interacting observations and qualitatively explain the interaction-assisted reversal by the reduction of entropy transport due to pairing correlations. Our work paves the way to studying the coupling of spin and heat in strongly correlated matter using spin-dependent optical techniques with cold atoms.