论文标题
连续可变资源的渐近状态转换
Asymptotic state transformations of continuous variable resources
论文作者
论文摘要
我们研究连续可变量子资源理论中的渐近状态变换。特别是,我们证明表现出较低的半持续性和强大性强度的单调可用于结合这些环境中的渐近转换率。这消除了对渐近连续性的需求,这是无限维系统的传统意义上无法定义的。我们考虑了(i)光学非经典性,(ii)纠缠和(iii)量子热力学的资源理论的三种应用。在第(ii)和(iii)的情况下,使用的单调分别是(无限维)壁板纠缠和自由能。对于情况(i),我们考虑了非古老性的相对熵,并证明它是较低的半连续性且强烈的超级效果。我们的主要技术贡献之一,也是建立这些结果的关键工具,是对非经典性相对熵的方便变异表达。然后,我们的技术在渐近转换率(包括线性光学元素下可实现的速度)上产生可计算的上限。我们还证明了许多结果,这些结果可以保证,未经典性的测量相对熵在任何物理上有意义的状态上都有界限,并且对于某些感兴趣的状态,例如Fock对角线状态,并且易于计算。最后,我们将发现应用程序应用于猫州操纵和嘈杂的Fock状态净化问题。
We study asymptotic state transformations in continuous variable quantum resource theories. In particular, we prove that monotones displaying lower semicontinuity and strong superadditivity can be used to bound asymptotic transformation rates in these settings. This removes the need for asymptotic continuity, which cannot be defined in the traditional sense for infinite-dimensional systems. We consider three applications, to the resource theories of (I) optical nonclassicality, (II) entanglement, and (III) quantum thermodynamics. In cases (II) and (III), the employed monotones are the (infinite-dimensional) squashed entanglement and the free energy, respectively. For case (I), we consider the measured relative entropy of nonclassicality and prove it to be lower semicontinuous and strongly superadditive. One of our main technical contributions, and a key tool to establish these results, is a handy variational expression for the measured relative entropy of nonclassicality. Our technique then yields computable upper bounds on asymptotic transformation rates, including those achievable under linear optical elements. We also prove a number of results which guarantee that the measured relative entropy of nonclassicality is bounded on any physically meaningful state and easily computable for some classes of states of interest, e.g., Fock diagonal states. We conclude by applying our findings to the problem of cat state manipulation and noisy Fock state purification.