论文标题
通货膨胀速度限制的新分支
A new branch of inflationary speed limits
论文作者
论文摘要
我们提出了一种新的通货膨胀机制,该机制对标量运动具有速度限制,即使在陡峭的潜力上也会产生加速的扩张。这是由于明确整合了通过尺寸六运算符耦合到Afteraton $ ϕ $的其他字段的简短模式,从而产生了有效动作的表达式,其中包括$(\ partialDistic)的非平凡(对数)函数^2 $。速度极限出现在该对数的分支切割中,该对数在大风味膨胀中产生,类似于在大型颜色扩展中引起的DBI通胀中切割的平方根分支。最后,我们描述了该模型参数的观察性约束。
We present a new mechanism for inflation which exhibits a speed limit on scalar motion, generating accelerated expansion even on a steep potential. This arises from explicitly integrating out the short modes of additional fields coupled to the inflaton $ϕ$ via a dimension six operator, yielding an expression for the effective action which includes a nontrivial (logarithmic) function of $(\partialϕ)^2$. The speed limit appears at the branch cut of this logarithm arising in a large flavor expansion, similarly to the square root branch cut in DBI inflation arising in a large color expansion. Finally, we describe observational constraints on the parameters of this model.