论文标题

罗宾双相问题与奇异和超级线性术语

Robin double-phase problems with singular and superlinear terms

论文作者

Papageorgiou, Nikolaos S., Rădulescu, Vicenţiu D., Repovš, Dušan D.

论文摘要

我们认为由$ p $ -laplacian和$ q $ -laplacian(即$(p,q)$ - 方程)的总和驱动的非线性罗宾问题。在反应中,奇异术语和参数扰动$λf(z,x)$的竞争效果,该$carathéodory和$(p-1)$ - $ x \ in \ mathbb {r} $ in \ mathbb {r},$ in \ mathbb {r} $,不满足Ambrosetti-Rabinowitz条件。使用变分工具,再加上截断和比较技术,我们证明了分叉型结果,将正面解决方案集的变化描述为参数$λ> 0 $的变化。

We consider a nonlinear Robin problem driven by the sum of $p$-Laplacian and $q$-Laplacian (i.e. the $(p,q)$-equation). In the reaction there are competing effects of a singular term and a parametric perturbation $λf(z,x)$, which is Carathéodory and $(p-1)$-superlinear at $x\in\mathbb{R},$ without satisfying the Ambrosetti-Rabinowitz condition. Using variational tools, together with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parameter $λ>0$ varies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源