论文标题
密集实心溶液中位错的长度尺度和无尺度动力学
Length scales and scale-free dynamics of dislocations in dense solid solutions
论文作者
论文摘要
通过分析从Fe0的分子动力学模拟获得的位错线粗糙度曲线来研究边缘位错和随机固体溶液之间的基本相互作用。70NI0.11CR0.19在一系列应力和温度范围内。这些粗糙度曲线揭示了默认过渡的标志性特征。也就是说,低于温度依赖性的临界应力,位错线在两个不同的长度尺度制度中表现出粗糙度,这些条件除以所谓的相关长度。这种相关长度随着施加的应力和临界应力(降低过渡或屈服应力)的正式增加而增加。在临界应力之上,线粗糙度曲线会收敛到随机噪声场的曲线。由这些结果激发,基于在相关长度以下的所有长度尺度上的相干线的概念开发了一个物理模型。在相关长度之上,溶质场禁止这种连贯的线弓。使用此模型,我们确定了实体溶液加强的现有理论中的潜在差距,并表明最近对长度依赖性脱位迁移率的观察结果可以合理化。
The fundamental interactions between an edge dislocation and a random solid solution are studied by analyzing dislocation line roughness profiles obtained from molecular dynamics simulations of Fe0.70Ni0.11 Cr0.19 over a range of stresses and temperatures. These roughness profiles reveal the hallmark features of a depinning transition. Namely, below a temperature-dependent critical stress, the dislocation line exhibits roughness in two different length scale regimes which are divided by a so-called correlation length. This correlation length increases with applied stress and at the critical stress (depinning transition or yield stress) formally goes to infinity. Above the critical stress, the line roughness profile converges to that of a random noise field. Motivated by these results, a physical model is developed based on the notion of coherent line bowing over all length scales below the correlation length. Above the correlation length, the solute field prohibits such coherent line bow outs. Using this model, we identify potential gaps in existing theories of solid solution strengthening and show that recent observations of length-dependent dislocation mobilities can be rationalized.