论文标题
克里格(Krieger
Krieger's type of nonsingular Poisson suspensions and IDPFT systems
论文作者
论文摘要
考虑到无限的可计分离子$γ$,我们明确地构建了每种krieger类型的非单词泊松$γ$ actions:$iii_λ$,以$λ\ in [0,1] $和$ ii_ \ ii_ \ infty $。即使对于$γ= \ bbb z $,结果也是新的。由于这些泊松悬浮液的作用是非常特殊的耗散基础,因此我们还获得了新的示例,这些示例是混合的非源性bernoulli $γ$ - actions和每种可能的克里格类型的IDPFT系统。
Given an infinite countable discrete amenable group $Γ$, we construct explicitly sharply weak mixing nonsingular Poisson $Γ$-actions of each Krieger's type: $III_λ$, for $λ\in[0,1]$, and $II_\infty$. The result is new even for $Γ=\Bbb Z$. As these Poisson suspension actions are over very special dissipative base, we obtain also new examples of sharply weak mixing nonsingular Bernoulli $Γ$-actions and IDPFT systems of each possible Krieger's type.