论文标题
快速驾驶方式中的最大动力发动机和冰箱
Maximum power heat engines and refrigerators in the fast-driving regime
论文作者
论文摘要
我们研究任意定期驱动的热机的性能的优化。在驾驶参数快速调制的假设中,我们得出了最佳的循环,该循环普遍最大化了热发动机的提取功率,冰箱的冷却能力以及一般而言的热电流的任何线性组合。我们将此最佳解决方案表示为``广义的奥托循环'',因为它与标准的Otto循环共享基本结构,但其特征是更多的快速中风。我们根据系统用作工作流体的希尔伯特空间的维度来束缚这个数字。这些结果的一般性允许广泛的应用程序范围,例如减少数值方法的计算复杂性,或者在系统储备相互作用以单个热化量表表征时,获得最佳协议的显式形式。在这种情况下,我们比较了最佳驱动的非相互作用和相互作用量子的热力学性能。值得注意的是,对于冰箱而言,非相互作用的量子位的性能几乎和相互作用一样,而在加热引擎盒中,最大功率和最大功率的效率都具有多体优势。此外,我们说明了研究基于QUTRIT的热发动机的范式模型的一般结果。我们的结果严格存在于驾驶不会产生没有连贯性的半经典案例中,最后我们讨论了非公认案例。
We study the optimization of the performance of arbitrary periodically driven thermal machines. Within the assumption of fast modulation of the driving parameters, we derive the optimal cycle that universally maximizes the extracted power of heat engines, the cooling power of refrigerators, and in general any linear combination of the heat currents. We denote this optimal solution as ``generalized Otto cycle'' since it shares the basic structure with the standard Otto cycle, but it is characterized by a greater number of fast strokes. We bound this number in terms of the dimension of the Hilbert space of the system used as working fluid. The generality of these results allows for a widespread range of applications, such as reducing the computational complexity for numerical approaches, or obtaining the explicit form of the optimal protocols when the system-baths interactions are characterized by a single thermalization scale. In this case, we compare the thermodynamic performance of a collection of optimally driven non-interacting and interacting qubits. Remarkably, for refrigerators the non-interacting qubits perform almost as well as the interacting ones, while in the heat engine case there is a many-body advantage both in the maximum power, and in the efficiency at maximum power. Additionally, we illustrate our general results studying the paradigmatic model of a qutrit-based heat engine. Our results strictly hold in the semiclassical case in which no coherence is generated by the driving, and finally we discuss the non-commuting case.