论文标题
崩溃与爆炸和全球存在中的全球存在
Collapse vs. blow up and global existence in the generalized Constantin-Lax-Majda equation
论文作者
论文摘要
研究了有限的时间奇异性形成与全球存在的解决方案,用于通用的康斯坦丁 - 拉克斯 - 马杰达方程,尤其强调了控制对流力量的参数$ a $ a $的影响。对于无限域上的解决方案,我们找到了一个新的临界值$ a_c = 0.68906665337007457 \ ldots $ $以下是有限的时间奇异性形成%,如果我们写A = a_c = 0.68906666666537007457 \ ldot爆炸缩小到零。我们在$ a = 1/2 $处找到了一种新的精确分析折叠解决方案,并证明存在领先顺序的复杂奇异性,用于$ a $ a $的一般值的分析延续,从真实的空间坐标到复杂平面。这种奇异性控制崩溃解决方案的领先顺序行为。对于$ a_c <a \ leq1 $,我们找到了一个爆破解决方案,其中爆炸区域的空间范围在奇异时期无限地扩展。对于$ a \ gtrsim 1.3 $,我们发现该解决方案在全球范围内存在,溶液幅度的及时幅度类似于指数的增长。我们还考虑了周期性边界条件的情况。我们确定了与实际行情况相似的$ a <a_c $的崩溃解决方案。对于$ a_c <a \ le0.95 $,我们发现新的爆破解决方案既不扩展也不崩溃。对于$ a \ ge 1,$我们确定了全球解决方案的存在。
The question of finite time singularity formation vs. global existence for solutions to the generalized Constantin-Lax-Majda equation is studied, with particular emphasis on the influence of a parameter $a$ which controls the strength of advection. For solutions on the infinite domain we find a new critical value $a_c=0.6890665337007457\ldots$ below which there is finite time singularity formation % if we write a=a_c=0.6890665337007457\ldots here then \ldots doesn't fit into the line that has a form of self-similar collapse, with the spatial extent of blow-up shrinking to zero. We find a new exact analytical collapsing solution at $a=1/2$ as well as prove the existence of a leading order complex singularity for general values of $a$ in the analytical continuation of the solution from the real spatial coordinate into the complex plane. This singularity controls the leading order behaviour of the collapsing solution. For $a_c<a\leq1$, we find a blow-up solution in which the spatial extent of the blow-up region expands infinitely fast at the singularity time. For $a \gtrsim 1.3$, we find that the solution exists globally with exponential-like growth of the solution amplitude in time. We also consider the case of periodic boundary conditions. We identify collapsing solutions for $a<a_c$ which are similar to the real line case. For $a_c<a\le0.95$, we find new blow-up solutions which are neither expanding nor collapsing. For $ a\ge 1,$ we identify a global existence of solutions.