论文标题
最大$ l_p $ - 型号理论到初始价值问题,并由添加剂过程生成的时间可测量的非局部运算符
A maximal $L_p$-regularity theory to initial value problems with time measurable nonlocal operators generated by additive processes
论文作者
论文摘要
令$ z =(z_t)_ {t \ geq0} $是一个附加过程,具有有限的三重态$(0,0,λ_T)_ {t \ geq0} $。假设对于任何schwartz函数$ \ mathbb {r}^d $,其傅立叶变换的位于$ c_c^{\ infty}中(b_ {c_s} \ setMinus b_s {c_s^{c_s^{ - 1}})$ \ int _ {\ Mathbb {r}^d} | \ Mathbb {e} [φ(x+r^{ - 1} Z_T)] | dx \ leq N_0 E^{ - \ frac { - \ frac {n_1 t} (r,t)\ in(0,1)\ times [0,t],\ end {equation*}和$$ \ |ψ^^μ(r^{ - 1} d)φ\ | _ {l_1(l_1(\ mathbb {\ mathbb {r}^d)} r \ in(0,1)。 $$其中$ s $是缩放函数(定义2.4),$ c_s $是与$ s $相关的正常常数,$μ$是$ \ mathbb {r}^d $,$ψ^^^^^^^^^^^^^^^^{ - 1} d $(x) ψ^^μ(r^{ - 1}ξ)\ Mathcal {f} [φ] \ right](x)$和$$ψ^^^^^^^^^^^^^^^^^^^^^^^^^^= \ int _ {\ Mathbb {r}^d}(e^} 1})μ(dy)。$$在本文中,我们建立了$ l_p $ -solvicability to初始值问题\ begin {equination} \ frac {\ partial u} {\ partial t}(t partial t}(t,t,x,x)= \ nathcal = \ nathcal {a} _z(a} _z(a} _z(t) (t,x)\ in(0,t)\ times \ times \ mathbb {r}^d,\ end end {equation},换句话说,存在一个唯一的解决方案$ u $ to ekation to equation满足$ \ | u \ | | ___ {l_q((0,t) N \ | U_0 \ | _ {b_ {p,q}^{s;γ-\ frac {2} {q}}}}}}}(\ mathbb {r}^d)},$ n $在$ n $中属于$ u $和$ u_0 $,以及这些空间$ b_ {p,q}^{s;γ-\ frac {2} {q}}}(\ Mathbb {r}^d)$和$ h_p^{μ;γ}(\ mathbb {r}^d)$ scalove besov besov besov besov besov besov space(请参阅定义2.8)和常规bess bess space(请参阅bessel ofcess(space)(参见3)。
Let $Z=(Z_t)_{t\geq0}$ be an additive process with a bounded triplet $(0,0,Λ_t)_{t\geq0}$. Suppose that for any Schwartz function $φ$ on $\mathbb{R}^d$ whose Fourier transform is in $C_c^{\infty}(B_{c_s} \setminus B_{c_s^{-1}} )$, there exist positive constants $N_0$, $N_1$, and $N_2$ such that \begin{equation*} \int_{\mathbb{R}^d}|\mathbb{E}[φ(x+r^{-1}Z_t)]|dx\leq N_0 e^{- \frac{N_1 t}{s(r)}},\quad \forall (r,t)\in(0,1)\times[0,T], \end{equation*} and $$ \|ψ^μ(r^{-1}D)φ\|_{L_1(\mathbb{R}^d)}\leq \frac{N_2}{s(r)},\quad \forall r\in(0,1). $$ where $s$ is a scaling function (Definition 2.4), $c_s$ is a positive constant related to $s$, $μ$ is a symmetric Lévy measure on $\mathbb{R}^d$, $ψ^μ(r^{-1}D)φ(x)= \mathcal{F}^{-1} \left[ ψ^μ(r^{-1}ξ) \mathcal{F}[φ]\right](x)$ and $$ψ^μ(ξ):=\int_{\mathbb{R}^d}(e^{iy\cdotξ}-1-iy\cdotξ1_{|y|\leq 1})μ(dy).$$ In this paper, we establish the $L_p$-solvability to the initial value problem \begin{equation} \frac{\partial u}{\partial t}(t,x)=\mathcal{A}_Z(t)u(t,x),\quad u(0,\cdot)=u_0,\quad (t,x)\in(0,T)\times\mathbb{R}^d, \end{equation} In other words, there exists a unique solution $u$ to equation satisfying $$ \|u\|_{L_q((0,T);H_p^{μ;γ}(\mathbb{R}^d))}\leq N\|u_0\|_{B_{p,q}^{s;γ-\frac{2}{q}}(\mathbb{R}^d)}, $$ where $N$ is independent of $u$ and $u_0$, and the spaces $B_{p,q}^{s;γ-\frac{2}{q}}(\mathbb{R}^d)$ and $H_p^{μ;γ}(\mathbb{R}^d)$ are scaled Besov spaces (see Definition 2.8) and generalized Bessel potential spaces (see Definition 2.3), respectively.