论文标题

大教章差异自动编码器

Bigeminal Priors Variational auto-encoder

论文作者

Ran, Xuming, Xu, Mingkun, Xu, Qi, Zhou, Huihui, Liu, Quanying

论文摘要

变分的自动编码器(VAE)是一种在无监督学习中的有影响力且普遍使用的基于可能性的生成模型。据报道,基于可能性的生成模型对分布(OOD)输入非常强大,并且可以通过假设该模型将比OOD数据集中的样本分配更高的样本(ID)数据集。但是,最近的作品报道了一种现象,即VAE通过与ID相比为OOD输入分配了更高的可能性,从而识别出某些OOD样本为ID。在这项工作中,我们介绍了一种新模型,即大型启示率变化自动编码器(BPVAE),以解决这一现象。 BPVAE旨在通过将VAE的力量与属于训练数据集和简单数据集的两个独立先验的能力相结合,从而提高VAE的鲁棒性,该数据分别低于训练数据集。 BPVAE学习了两个数据集的功能,比简单数据集分配了培训数据集的可能性更高。这样,我们可以使用BPVAE的密度估计值来检测OOD样品。定量实验结果表明,与标准VAE相比,我们的模型具有更好的概括能力和更强的鲁棒性,证明了协作先验提出的混合学习方法的有效性。总体而言,这项工作铺平了一种新的途径,可以通过多个潜在的先验建模来克服OOD问题。

Variational auto-encoders (VAEs) are an influential and generally-used class of likelihood-based generative models in unsupervised learning. The likelihood-based generative models have been reported to be highly robust to the out-of-distribution (OOD) inputs and can be a detector by assuming that the model assigns higher likelihoods to the samples from the in-distribution (ID) dataset than an OOD dataset. However, recent works reported a phenomenon that VAE recognizes some OOD samples as ID by assigning a higher likelihood to the OOD inputs compared to the one from ID. In this work, we introduce a new model, namely Bigeminal Priors Variational auto-encoder (BPVAE), to address this phenomenon. The BPVAE aims to enhance the robustness of the VAEs by combing the power of VAE with the two independent priors that belong to the training dataset and simple dataset, which complexity is lower than the training dataset, respectively. BPVAE learns two datasets'features, assigning a higher likelihood for the training dataset than the simple dataset. In this way, we can use BPVAE's density estimate for detecting the OOD samples. Quantitative experimental results suggest that our model has better generalization capability and stronger robustness than the standard VAEs, proving the effectiveness of the proposed approach of hybrid learning by collaborative priors. Overall, this work paves a new avenue to potentially overcome the OOD problem via multiple latent priors modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源