论文标题

基于机器学习的公司投资价值评估

Evaluation of company investment value based on machine learning

论文作者

Hu, Junfeng, Li, Xiaosa, Xu, Yuru, Wu, Shaowu, Zheng, Bin

论文摘要

在本文中,基于全面的公司信息建立了公司投资价值评估模型。在数据挖掘和提取一组436个特征参数之后,通过通过基于树的特征选择缩小维度来获得最佳特征子集,然后使用XGBoost和LightGBM模型进行5倍的交叉验证。结果表明,根平方误差(RMSE)分别达到3.098和3.059。为了进一步提高稳定性和概括能力,贝叶斯山脊回归已被用于训练基于XGBoost和LightGBM模型的堆叠模型。相应的RMSE最高为3.047。最后,分析了不同特征对LightGBM模型的重要性。

In this paper, company investment value evaluation models are established based on comprehensive company information. After data mining and extracting a set of 436 feature parameters, an optimal subset of features is obtained by dimension reduction through tree-based feature selection, followed by the 5-fold cross-validation using XGBoost and LightGBM models. The results show that the Root-Mean-Square Error (RMSE) reached 3.098 and 3.059, respectively. In order to further improve the stability and generalization capability, Bayesian Ridge Regression has been used to train a stacking model based on the XGBoost and LightGBM models. The corresponding RMSE is up to 3.047. Finally, the importance of different features to the LightGBM model is analysed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源