论文标题
双线性游戏和普通矩阵的平均案量加速度
Average-case Acceleration for Bilinear Games and Normal Matrices
论文作者
论文摘要
生成建模和对抗性学习的进步引起了人们对平滑游戏的重新兴趣。但是,第二个衍生物的矩阵中缺乏对称性会带来经典最小化框架中不存在的挑战。尽管已经为最小化问题而开发了丰富的平均案例分析理论,但在平滑游戏的背景下,知之甚少。在这项工作中,我们通过为平滑游戏子集开发平均最佳的一阶方法来解决这一差距的第一步。我们做出以下三个主要贡献。首先,我们表明,对于零和双线游戏,平均案例最佳方法是最小化汉密尔顿的最佳方法。其次,我们为对应于正常矩阵的最佳方法提供了明确的表达,可能是非对称的。最后,我们将其专门用于磁盘中特征值的矩阵,并且与最坏情况最佳算法相比,它显示出可证明的速度。我们通过基准与我们的假设不匹配的程度不同。
Advances in generative modeling and adversarial learning have given rise to renewed interest in smooth games. However, the absence of symmetry in the matrix of second derivatives poses challenges that are not present in the classical minimization framework. While a rich theory of average-case analysis has been developed for minimization problems, little is known in the context of smooth games. In this work we take a first step towards closing this gap by developing average-case optimal first-order methods for a subset of smooth games. We make the following three main contributions. First, we show that for zero-sum bilinear games the average-case optimal method is the optimal method for the minimization of the Hamiltonian. Second, we provide an explicit expression for the optimal method corresponding to normal matrices, potentially non-symmetric. Finally, we specialize it to matrices with eigenvalues located in a disk and show a provable speed-up compared to worst-case optimal algorithms. We illustrate our findings through benchmarks with a varying degree of mismatch with our assumptions.