论文标题

相互作用的费尔米管系统的频率依赖性功能重归其化组

Frequency Dependent Functional Renormalization Group for Interacting Fermionic Systems

论文作者

Yirga, Nahom K., Campbell, David K.

论文摘要

我们得出了功能重归于(FRG)方程的扩展,该方程以系统的方式处理顶点的频率和动量依赖性。该方案将通道的FRG方程扩展到频域,并将其重新定义为粒子粒子,颗粒孔和粒子孔交换通道中的一系列线性积分方程。我们表明,方程式的线性性提供了许多计算优势,并为各种哈密顿人提供了融合,稳定的解决方案。由于扩展是在通道之间的耦合中,因此使该方案在计算上可行所必需的截断仍然会导致方程,从而使所有通道的贡献都平等地处理。作为第一个基准测试,我们将两环FRG方程应用于单个杂质Anderson模型。我们考虑FRG内的误差源,与每种相关的计算成本以及调节器的选择如何影响FRG的流动。然后,我们使用最佳截断方案在一个和二维中研究扩展的哈伯族哈密顿量。我们发现,在许多感兴趣的情况下,FRG流量会收敛到稳定的顶点和自我能源,从中我们可以从中提取各种相关功能和感兴趣的敏感性。

We derive an expansion of the functional renormalization (fRG) equations that treats the frequency and momentum dependencies of the vertices in a systematic manner. The scheme extends the channel-decomposed fRG equations to the frequency domain and reformulates them as a series of linear integral equations in the particle-particle, particle-hole and particle-hole exchange channels. We show that the linearity of the equations offers numerous computational advantages and leads to converged, stable solutions for a variety of Hamiltonians. As the expansion is in the coupling between channels, the truncations that are necessary to making the scheme computationally viable still lead to equations that treat contributions from all channels equally. As a first benchmark we apply the two-loop fRG equations to the single impurity Anderson model. We consider the sources of error within the fRG, the computational cost associated with each, and how the choice of regulator affects the flow of the fRG. We then use the optimal truncation scheme to study the Extended Hubbard Hamiltonian in one and two dimensions. We find that in many cases of interest the fRG flow converges to a stable vertex and self-energy from which we can extract the various correlation functions and susceptibilities of interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源