论文标题
具有目标矩阵优化范式的不合格高阶网格的HR适应性
hr-adaptivity for nonconforming high-order meshes with the target matrix optimization paradigm
论文作者
论文摘要
我们提出了一个$ HR $ - 适应性框架,以优化高阶网格。这项工作扩展了Dobrev等人的$ r $ - 适应性方法,用于网格优化,在那里我们利用目标 - 矩阵优化范式(TMOP)最小化了取决于每个元素的当前和目标几何参数的功能:元素方面比例,大小,skew和erientientation。由于固定的网格拓扑限制了在每个位置上实现目标大小和方面比例的能力,因此在本文中,我们增加了具有不合格的自适应网格细化的$ r $ $自适应框架,以进一步减少相对于目标几何参数的错误。所提出的配方(称为$ hr $适应性)引入了基于TMOP的质量估计器,以通过各向异性的改进和尺寸定位来满足网格每个元素中的各向异性改进。提出的方法纯粹是代数,延伸到任何顺序的简单和六面的四边形,并支持2D和3D中的不合格的各向同性和各向异性修补。使用具有已知精确解决方案的问题,我们证明了$ hr $适应性的有效性比$ r- $和$ h $ - 适应性在获得较少的自由度的解决方案中获得类似的准确性。我们还提供了几个示例,表明$ hr $适应性可以帮助满足几何目标,即使$ r $ $ - 适应性未能这样做,这是由于初始网格的拓扑。
We present an $hr$-adaptivity framework for optimization of high-order meshes. This work extends the $r$-adaptivity method for mesh optimization by Dobrev et al., where we utilized the Target-Matrix Optimization Paradigm (TMOP) to minimize a functional that depends on each element's current and target geometric parameters: element aspect-ratio, size, skew, and orientation. Since fixed mesh topology limits the ability to achieve the target size and aspect-ratio at each position, in this paper we augment the $r$-adaptivity framework with nonconforming adaptive mesh refinement to further reduce the error with respect to the target geometric parameters. The proposed formulation, referred to as $hr$-adaptivity, introduces TMOP-based quality estimators to satisfy the aspect-ratio-target via anisotropic refinements and size-target via isotropic refinements in each element of the mesh. The methodology presented is purely algebraic, extends to both simplices and hexahedra/quadrilaterals of any order, and supports nonconforming isotropic and anisotropic refinements in 2D and 3D. Using a problem with a known exact solution, we demonstrate the effectiveness of $hr$-adaptivity over both $r-$ and $h$-adaptivity in obtaining similar accuracy in the solution with significantly fewer degrees of freedom. We also present several examples that show that $hr$-adaptivity can help satisfy geometric targets even when $r$-adaptivity fails to do so, due to the topology of the initial mesh.