论文标题
时间依赖性筛选解释了2D半导体的超快激发信号上升
Time-dependent screening explains the ultrafast excitonic signal rise in 2D semiconductors
论文作者
论文摘要
我们使用第一原理使用第一原理实时方法来计算MOS $ _2 $单层中瞬态反射信号的时间演变。我们的模拟为信号的延迟但超快的演变提供了简单而直观的物理图片,其上升时间取决于泵激光的过量能量:在A-和B-Exciton上方的激光能量,泵脉冲激发电子和孔远离第一个Brillouin区域的K Valleys。电子 - 音波和孔 - 孔散射导致载体逐渐放松,向k周围的小$ \ textit {主动激活的兴奋性区域} $,从而增强了介电筛选。随附的时间依赖性带隙重新归一化在Pauli阻塞和激子结合能量重归其化方面占主导地位。这解释了探针脉冲的瞬态反射信号的延迟积累,这与最近的实验数据非常吻合。我们的结果表明,观察到的延迟不是激子形成过程的独特签名,而是由协调的载体动力学及其对筛选的影响引起的。
We calculate the time evolution of the transient reflection signal in an MoS$_2$ monolayer on a SiO$_2$/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers towards small $\textit{Active Excitonic Regions}$ around K, enhancing the dielectric screening. The accompanying time-dependent band gap renormalization dominates over Pauli blocking and the excitonic binding energy renormalization. This explains the delayed buildup of the transient reflection signal of the probe pulse, in excellent agreement with recent experimental data. Our results show that the observed delay is not a unique signature of an exciton formation process but rather caused by coordinated carrier dynamics and its influence on the screening.