论文标题

基于多个时空融合网络的自行车共享系统的需求预测

Demand Forecasting in Bike-sharing Systems Based on A Multiple Spatiotemporal Fusion Network

论文作者

Yan, Xiao, Kou, Gang, Xiao, Feng, Zhang, Dapeng, Gan, Xianghua

论文摘要

自行车共享系统(BSS)在全球范围内变得越来越流行,并吸引了广泛的研究兴趣。在本文中,研究了BSSS中的需求预测问题。空间和时间特征对于BSS中的需求预测至关重要,但是提取时空动力学是具有挑战性的。另一个挑战是捕获时空动力学与外部因素(例如天气,每周和一天的时间)之间的关系。为了应对这些挑战,我们提出了一个名为MSTF-NET的多个时空融合网络。 MSTF-NET由多个时空块组成:3D卷积网络(3D-CNN)块,Eidetic 3D卷积长的短期记忆网络(E3D-LSTM)块和完全连接(FC)块。具体而言,3D-CNN阻止了每个片段中提取短期时空依赖性(即紧密度,周期和趋势)的提取; E3D-LSTM阻止了所有片段的长期时空依赖性进一步提取。 FC阻止提取外部因素的非线性相关性。最后,融合了E3D-LSTM和FC块的潜在表示以获得最终预测。对于两个实际数据集,显示MSTF-NET的表现优于七个最先进的模型。

Bike-sharing systems (BSSs) have become increasingly popular around the globe and have attracted a wide range of research interests. In this paper, the demand forecasting problem in BSSs is studied. Spatial and temporal features are critical for demand forecasting in BSSs, but it is challenging to extract spatiotemporal dynamics. Another challenge is to capture the relations between spatiotemporal dynamics and external factors, such as weather, day-of-week, and time-of-day. To address these challenges, we propose a multiple spatiotemporal fusion network named MSTF-Net. MSTF-Net consists of multiple spatiotemporal blocks: 3D convolutional network (3D-CNN) blocks, eidetic 3D convolutional long short-term memory networks (E3D-LSTM) blocks, and fully-connected (FC) blocks. Specifically, 3D-CNN blocks highlight extracting short-term spatiotemporal dependence in each fragment (i.e., closeness, period, and trend); E3D-LSTM blocks further extract long-term spatiotemporal dependence over all fragments; FC blocks extract nonlinear correlations of external factors. Finally, the latent representations of E3D-LSTM and FC blocks are fused to obtain the final prediction. For two real-world datasets, it is shown that MSTF-Net outperforms seven state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源