论文标题
Markov模型来自Fokker-Planck方程的平方根近似:计算网格依赖性通量
Markov models from the Square Root Approximation of the Fokker-Planck equation: calculating the grid-dependent flux
论文作者
论文摘要
分子动力学非常复杂,但是了解其动力学的缓慢成分对于理解其宏观特性至关重要。为此,人们将分子动力学建模为随机过程,并分析相关的Fokker-Planck运算符或密切相关的传输操作员的主要征收函数。到目前为止,离散操作员的计算需要广泛的分子动力学模拟。 Fokker-Planck方程的平方根近似是一种计算过渡速率作为相邻网格单元的玻尔兹曼密度比的比率的方法,原则上可以计算而无需模拟。在先前的工作中,我们仍然使用分子动力学模拟来确定通量。在这里,我们提出了几种方法来计算各种网格类型的精确或近似通量,从而估计速率矩阵而无需模拟。使用模型电位,我们测试方法的计算效率,以及它们重现主要的本征函数和特征值的准确性。对于这些模型电位,如果使用常规网格,则可以在单个高性能计算服务器上在几秒钟内获得最多可在$ \ Mathcal {O}(10^6)$状态的速率矩阵。
Molecular dynamics are extremely complex, yet understanding the slow components of their dynamics is essential to understanding their macroscopic properties. To achieve this, one models the molecular dynamics as a stochastic process and analyses the dominant eigenfunctions of the associated Fokker-Planck operator, or of closely related transfer operators. So far, the calculation of the discretized operators requires extensive molecular dynamics simulations. The Square-root approximation of the Fokker-Planck equation is a method to calculate transition rates as a ratio of the Boltzmann densities of neighboring grid cells times a flux, and can in principle be calculated without a simulation. In a previous work we still used molecular dynamics simulations to determine the flux. Here, we propose several methods to calculate the exact or approximate flux for various grid types, and thus estimate the rate matrix without a simulation. Using model potentials we test computational efficiency of the methods, and the accuracy with which they reproduce the dominant eigenfunctions and eigenvalues. For these model potentials, rate matrices with up to $\mathcal{O}(10^6)$ states can be obtained within seconds on a single high-performance compute server if regular grids are used.