论文标题
三个分类导致球上加权强大空间的理论
Three Classification Results In The Theory Of Weighted Hardy Spaces On The Ball
论文作者
论文摘要
我们在D维复合单元球上介绍了一个天然的Hilbert功能空间家族,并分类哪些人满足球的子集在且仅当球具有一个将球的分析自动形态带到另一个时,在且仅当具有同构亚型子空间。我们还表征了单位磁盘上的一对加权强壮的空间对,这些空间是通过组成算子通过简单标准在其各自的权重序列上通过组成算子进行的。
We present a natural family of Hilbert function spaces on the d-dimensional complex unit ball and classify which of them satisfy that subsets of the ball yield isometrically isomorphic subspaces if and only if there is an analytic automorphism of the ball taking one to the other. We also characterize pairs of weighted Hardy spaces on the unit disk which are isomorphic via a composition operator by a simple criterion on their respective sequences of weights.