论文标题
超稳定匹配问题的矩形概括
A Matroid Generalization of the Super-Stable Matching Problem
论文作者
论文摘要
欧文(Irving)引入的超级稳定匹配是稳定匹配问题的变体中的解决方案概念,其中偏好可能包含关系。欧文(Irving)提出了一种多项式时间算法,即如果存在超稳定的匹配,则找到了超稳定匹配的问题。在本文中,我们考虑了超稳定匹配的矩形概括。我们称我们对超级稳定的超稳定共同独立集的概括。这可以将其视为稳定匹配的概括的概括,以实现Fleiner提出的严格偏好。我们提出了一种多项式时间算法,即如果存在超稳定的共同独立集,则找到一个超稳定的共同独立集的问题。
A super-stable matching, which was introduced by Irving, is a solution concept in a variant of the stable matching problem in which the preferences may contain ties. Irving proposed a polynomial-time algorithm for the problem of finding a super-stable matching if a super-stable matching exists. In this paper, we consider a matroid generalization of a super-stable matching. We call our generalization of a super-stable matching a super-stable common independent set. This can be considered as a generalization of the matroid generalization of a stable matching for strict preferences proposed by Fleiner. We propose a polynomial-time algorithm for the problem of finding a super-stable common independent set if a super-stable common independent set exists.