论文标题

估计非平衡轨迹的时间依赖性熵产生

Estimating time-dependent entropy production from non-equilibrium trajectories

论文作者

Otsubo, Shun, Manikandan, Sreekanth K, Sagawa, Takahiro, Krishnamurthy, Supriya

论文摘要

熵产生的速率提供了对非平衡系统的有用定量度量,并直接从实验的时间序数据中估算了它是非常可取的。已经考虑了几种固定动力学的方法,其中一些是基于熵生产速率的变异表征。但是,在非平稳动态的情况下获得它的问题仍然没有探索。在这里,我们通过证明可以将变异方法推广以使熵产生速率的确切值即使是非平稳动力学的确切值来解决这个开放问题。在此结果的基础上,我们开发了一种有效的算法,该算法通过使用机器学习技术在及时及时估算熵产生速率,并使用实验相关的参数方案中使用可分析的Langevin模型来验证我们的数值估计。我们的方法具有很大的实践意义,因为它所需的只是关注系统的时间序列数据,而无需先前了解系统参数。

The rate of entropy production provides a useful quantitative measure of a non-equilibrium system and estimating it directly from time-series data from experiments is highly desirable. Several approaches have been considered for stationary dynamics, some of which are based on a variational characterization of the entropy production rate. However, the issue of obtaining it in the case of non-stationary dynamics remains largely unexplored. Here, we solve this open problem by demonstrating that the variational approaches can be generalized to give the exact value of the entropy production rate even for non-stationary dynamics. On the basis of this result, we develop an efficient algorithm that estimates the entropy production rate continuously in time by using machine learning techniques, and validate our numerical estimates using analytically tractable Langevin models in experimentally relevant parameter regimes. Our method is of great practical significance since all it requires is time-series data for the system of interest without requiring prior knowledge of the system parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源