论文标题

使用预测一致性和逐步完善的估算相机响应函数,并扩展到深度学习

Estimation of Camera Response Function using Prediction Consistency and Gradual Refinement with an Extension to Deep Learning

论文作者

Sharma, Aashish, Tan, Robby T., Cheong, Loong-Fah

论文摘要

来自单个图像的CRF估计的大多数现有方法无法处理一般的真实图像。例如,仅当噪声的存在微不足道时,基于从边缘提取的颜色贴片提取的颜色贴片的EDGECRF有效地起作用,而对于许多真实的图像来说,情况并非如此;而且,CRFNET是一种基于完全监督的深度学习工作的最新方法,仅针对培训数据中的CRF,因此无法处理培训数据以外的其他可能的CRF。为了解决这些问题,我们使用预测一致性和渐进性提出了一种非深度学习方法。首先,我们更多地依靠输入图像的贴片,这些贴片提供了更一致的预测。如果贴片的预测更加一致,则意味着该贴片可能会受到噪声或任何下颜色组合的影响较小,因此,对于CRF估计,它可能更可靠。其次,我们采用逐步完善方案,在该方案中,我们从一个简单的CRF模型开始,以生成一个对噪声更强大但准确的结果,然后我们逐渐提高了模型的复杂性以改善结果。这是因为一个简单的模型虽然不准确,但与复杂模型相比,对噪声的效果要少于噪声。我们的实验表明,对于白天和夜间真实图像,我们的方法优于现有的单像方法。我们进一步提出了一个更有效的深度学习扩展,该扩展可以在测试输入图像上执行测试时间训练(基于无监督的损失)。与CRFNET相比,这为我们的方法提供了更好的概括性能,使其实际上更适用于CRF估算一般的真实图像。

Most existing methods for CRF estimation from a single image fail to handle general real images. For instance, EdgeCRF based on colour patches extracted from edges works effectively only when the presence of noise is insignificant, which is not the case for many real images; and, CRFNet, a recent method based on fully supervised deep learning works only for the CRFs that are in the training data, and hence fail to deal with other possible CRFs beyond the training data. To address these problems, we introduce a non-deep-learning method using prediction consistency and gradual refinement. First, we rely more on the patches of the input image that provide more consistent predictions. If the predictions from a patch are more consistent, it means that the patch is likely to be less affected by noise or any inferior colour combinations, and hence, it can be more reliable for CRF estimation. Second, we employ a gradual refinement scheme in which we start from a simple CRF model to generate a result which is more robust to noise but less accurate, and then we gradually increase the model's complexity to improve the result. This is because a simple model, while being less accurate, overfits less to noise than a complex model does. Our experiments show that our method outperforms the existing single-image methods for daytime and nighttime real images. We further propose a more efficient deep learning extension that performs test-time training (based on unsupervised losses) on the test input image. This provides our method better generalization performance than CRFNet making it more practically applicable for CRF estimation for general real images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源