论文标题

空间回归的几步学习

Few-shot Learning for Spatial Regression

论文作者

Iwata, Tomoharu, Tanaka, Yusuke

论文摘要

我们提出了一些用于空间回归的学习方法。尽管高斯过程(GPS)已成功用于空间回归,但它们需要在目标任务中进行许多观察才能实现高预测性能。我们的模型经过有关各个区域中各种属性的空间数据集进行了训练,并预测了看不见区域中看不见的属性的值。使用我们的模型,使用神经网络从给定的小数据中推断出任务表示。然后,由具有GP框架的神经网络预测空间值,其中特定于任务的属性由任务表示控制。 GP框架使我们能够在分析上获得适合小数据的预测。通过在目标函数中使用改编的预测,我们可以有效,有效地训练我们的模型,从而使测试预测性能在适应新给出的小数据时会提高。在我们的实验中,我们证明所提出的方法比使用空间数据集的现有元学习方法实现了更好的预测性能。

We propose a few-shot learning method for spatial regression. Although Gaussian processes (GPs) have been successfully used for spatial regression, they require many observations in the target task to achieve a high predictive performance. Our model is trained using spatial datasets on various attributes in various regions, and predicts values on unseen attributes in unseen regions given a few observed data. With our model, a task representation is inferred from given small data using a neural network. Then, spatial values are predicted by neural networks with a GP framework, in which task-specific properties are controlled by the task representations. The GP framework allows us to analytically obtain predictions that are adapted to small data. By using the adapted predictions in the objective function, we can train our model efficiently and effectively so that the test predictive performance improves when adapted to newly given small data. In our experiments, we demonstrate that the proposed method achieves better predictive performance than existing meta-learning methods using spatial datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源