论文标题
直接确认径向速度行星$β$ pic c C
Direct confirmation of the radial-velocity planet $β$ Pic c
论文作者
论文摘要
用于检测巨型系外行星的方法可以广泛分为两类:间接和直接。间接方法对轨道周期较小的行星更敏感,而直接检测对距离宿主恒星距离的行星更敏感。 %,因此在长轨道时期。这种二分法使得很难立即将这两种技术组合在单个目标上。通过直接和间接技术进行的同时测量提供了确定行星质量和光度的可能性以及一种测试形成模型的方法。在这里,我们旨在展示以这种方式使用径向速度引导的长期基线干涉观测。我们观察到最近发现的巨型行星$β$ pictoris c具有重力,安装在非常大的望远镜干涉仪(VLTI)上。这项研究构成了通过径向速度发现的行星的第一个直接确认。我们发现该行星的温度为$ t = 1250 \ pm50 $ \,k,动态质量为$ m = 8.2 \ pm0.8 \,m _ {\ rm jup} $。以$ 18.5 \ pm2.5 $ \,MYR,这将$β$ pic c C接近“热点”轨道,通常与磁盘不稳定性相关。相反,行星轨道的距离为2.7 \,Au,它太近了,无法发生磁盘不稳定。较低的明显大小($ m _ {\ rm k} = 14.3 \ pm 0.1 $)有利于核心积聚方案。我们建议这种明显的矛盾是热核积聚的迹象,例如,由于行星芯的质量或在形成过程中存在高温积聚冲击的质量。
Methods used to detect giant exoplanets can be broadly divided into two categories: indirect and direct. Indirect methods are more sensitive to planets with a small orbital period, whereas direct detection is more sensitive to planets orbiting at a large distance from their host star. %, and thus on long orbital period. This dichotomy makes it difficult to combine the two techniques on a single target at once. Simultaneous measurements made by direct and indirect techniques offer the possibility of determining the mass and luminosity of planets and a method of testing formation models. Here, we aim to show how long-baseline interferometric observations guided by radial-velocity can be used in such a way. We observed the recently-discovered giant planet $β$ Pictoris c with GRAVITY, mounted on the Very Large Telescope Interferometer (VLTI). This study constitutes the first direct confirmation of a planet discovered through radial velocity. We find that the planet has a temperature of $T = 1250\pm50$\,K and a dynamical mass of $M = 8.2\pm0.8\,M_{\rm Jup}$. At $18.5\pm2.5$\,Myr, this puts $β$ Pic c close to a 'hot start' track, which is usually associated with formation via disk instability. Conversely, the planet orbits at a distance of 2.7\,au, which is too close for disk instability to occur. The low apparent magnitude ($M_{\rm K} = 14.3 \pm 0.1$) favours a core accretion scenario. We suggest that this apparent contradiction is a sign of hot core accretion, for example, due to the mass of the planetary core or the existence of a high-temperature accretion shock during formation.