论文标题
基于EACO的人形机器人技术的生物启发的双足运动控制
Bioinspired Bipedal Locomotion Control for Humanoid Robotics Based on EACO
论文作者
论文摘要
为了构建一个可以像人类或其他腿部动物一样高效和稳定行走的机器人,我们开发了增强的精英型蚂蚁菌落优化〜(EACO)算法(EACO)算法,在人类机器人或其他腿部机器人的实时应用中,具有基因和交叉操作员。这项工作介绍了通过使用马尔可夫链估算预期的收敛速率,促进了EACO的全球搜索能力和EACO的收敛速率。此外,我们特别关注EACO算法在各种问题上,从ACO,真实的气体,具有神经网络的气体〜(NNS),粒子群优化〜(PSO)到复杂的机器人系统到复杂的机器人系统,包括步态合成,动态模型,可参数轨迹轨迹的动态建模和人类人体机器人的盖特优化。实验结果说明了这种方法发现过早收敛概率,解决固有的停滞并促进基于EACO的类人体机器人机器人系统的收敛速率,并证明了我们解决复杂优化任务的策略的适用性和有效性。我们发现,使用EACO优化策略,我们发现了可靠且快速的步态,速度高达0.47m/s。这些发现对EACO的理解和应对固有的停滞和不良收敛率具有重要意义,并提供了对遗传体系结构和控制人类机器人技术的优化的新见解。
To construct a robot that can walk as efficiently and steadily as humans or other legged animals, we develop an enhanced elitist-mutated ant colony optimization~(EACO) algorithm with genetic and crossover operators in real-time applications to humanoid robotics or other legged robots. This work presents promoting global search capability and convergence rate of the EACO applied to humanoid robots in real-time by estimating the expected convergence rate using Markov chain. Furthermore, we put a special focus on the EACO algorithm on a wide range of problems, from ACO, real-coded GAs, GAs with neural networks~(NNs), particle swarm optimization~(PSO) to complex robotics systems including gait synthesis, dynamic modeling of parameterizable trajectories and gait optimization of humanoid robotics. The experimental results illustrate the capability of this method to discover the premature convergence probability, tackle successfully inherent stagnation, and promote the convergence rate of the EACO-based humanoid robotics systems and demonstrated the applicability and the effectiveness of our strategy for solving sophisticated optimization tasks. We found reliable and fast walking gaits with a velocity of up to 0.47m/s using the EACO optimization strategy. These findings have significant implications for understanding and tackling inherent stagnation and poor convergence rate of the EACO and provide new insight into the genetic architectures and control optimization of humanoid robotics.