论文标题

MIMO ILC使用输入加权复合物回归用于精确海上机器人

MIMO ILC for Precision SEA robots using Input-weighted Complex-Kernel Regression

论文作者

Yan, Leon, Banka, Nathan, Owan, Parker, Piaskowy, Walter Tony, Garbini, Joseph, Devasia, Santosh

论文摘要

这项工作通过串联弹性执行器(SEA)提高了轻质机器人的定位精度。轻巧的海上机器人以及低阻抗控制,可以在飞机组装期间在飞机翼内部的不确定,狭窄的空间中造成损坏,而不会造成损坏。然而,海上机器人中的实质性建模不确定性降低了基于模型的方法,例如基于反转的进料。因此,本文通过多输入多输出(MIMO),迭代学习控制(ILC)方法提高了海上机器人围绕特定工作点的精度。本文的主要贡献是(i)引入输入加权复杂的内核,以使用复杂的高斯过程回归(C-GPR)(ii)在迭代中获得基于GeršgorinTheorem的条件来估算本地MIMO模型,以确保ILC在噪声相关的限制中的精确性,甚至与估计模型中的错误相关限制中的精确性; (iii)用实验性海机器人证明了精确定位。在有或没有ILC的情况下,比较实验结果显示位置精度(接近机器人的可重复性限制)和随着MIMO ILC的使用,SEA机器人的工作速度提高了约90%。

This work improves the positioning precision of lightweight robots with series elastic actuators (SEAs). Lightweight SEA robots, along with low-impedance control, can maneuver without causing damage in uncertain, confined spaces such as inside an aircraft wing during aircraft assembly. Nevertheless, substantial modeling uncertainties in SEA robots reduce the precision achieved by model-based approaches such as inversion-based feedforward. Therefore, this article improves the precision of SEA robots around specified operating points, through a multi-input multi-output (MIMO), iterative learning control (ILC) approach. The main contributions of this article are to (i) introduce an input-weighted complex kernel to estimate local MIMO models using complex Gaussian process regression (c-GPR) (ii) develop Geršgorin-theorem-based conditions on the iteration gains for ensuring ILC convergence to precision within noise-related limits, even with errors in the estimated model; and (iii) demonstrate precision positioning with an experimental SEA robot. Comparative experimental results, with and without ILC, show around 90% improvement in the positioning precision (close to the repeatability limit of the robot) and a 10-times increase in the SEA robot's operating speed with the use of the MIMO ILC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源