论文标题
乔丹(Alperin-McKay)猜想的约旦分解
Jordan Decomposition for the Alperin-McKay Conjecture
论文作者
论文摘要
Späth表明,如果所有有限的简单基团持有所谓的电感Alperin-Mckay条件,则有限基团的表示理论中的Alperin-McKay猜想将保持。在上一篇文章中,我们表明,可以举起有限型谎言类型组的Bonnafé-Rouquier等效性,包括谎言类型组的自动形态。我们使用结果来减少对谎言类型组的电感条件的验证,从而减少准隔离块。
Späth showed that the Alperin-McKay conjecture in the representation theory of finite groups holds if the so-called inductive Alperin-McKay condition holds for all finite simple groups. In a previous article, we showed that the Bonnafé-Rouquier equivalence for blocks of finite groups of Lie type can be lifted to include automorphisms of groups of Lie type. We use our results to reduce the verification of the inductive condition for groups of Lie type to quasi-isolated blocks.