论文标题

不确定性 - 几乎没有图像分类

Uncertainty-Aware Few-Shot Image Classification

论文作者

Zhang, Zhizheng, Lan, Cuiling, Zeng, Wenjun, Chen, Zhibo, Chang, Shih-Fu

论文摘要

很少有图像分类学会从有限的标记数据中识别新类别。基于公制的方法已经广泛研究了基于数据的样本,通过根据其特征相似性从支撑集中找到最近的原型来对查询样本进行分类。神经网络在其计算出的不同对的相似性上具有不同的不确定性。理解和建模相似性的不确定性可以促进几次优化的有限样品的开发。在这项工作中,我们通过对查询支持对的相似性进行建模并进行不确定性 - 意识到的优化来提出不确定性意识到图像分类的几个框架。特别是,我们通过将观察到的相似性转换为概率表示,并将其纳入损失以进行更有效的优化来利用这种不确定性。为了共同考虑支持集中查询与原型之间的相似性,利用基于图的模型来估计对的不确定性。广泛的实验表明,我们提出的方法在强大的基线上带来了重大改进,并实现了最先进的性能。

Few-shot image classification learns to recognize new categories from limited labelled data. Metric learning based approaches have been widely investigated, where a query sample is classified by finding the nearest prototype from the support set based on their feature similarities. A neural network has different uncertainties on its calculated similarities of different pairs. Understanding and modeling the uncertainty on the similarity could promote the exploitation of limited samples in few-shot optimization. In this work, we propose Uncertainty-Aware Few-Shot framework for image classification by modeling uncertainty of the similarities of query-support pairs and performing uncertainty-aware optimization. Particularly, we exploit such uncertainty by converting observed similarities to probabilistic representations and incorporate them to the loss for more effective optimization. In order to jointly consider the similarities between a query and the prototypes in a support set, a graph-based model is utilized to estimate the uncertainty of the pairs. Extensive experiments show our proposed method brings significant improvements on top of a strong baseline and achieves the state-of-the-art performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源