论文标题

极端黑洞和重力波物理计算的GPU加速混合精液WENO方法

A GPU-accelerated mixed-precision WENO method for extremal black hole and gravitational wave physics computations

论文作者

Field, Scott E., Gottlieb, Sigal, Grant, Zachary J., Isherwood, Leah F., Khanna, Gaurav

论文摘要

我们开发和使用一种新型的混合过度加权基本上非振荡(WENO)方法来求解Teukolsky方程,这是在对Kerr黑洞的扰动进行建模时会产生的。我们表明,由于需要在后者的稳定性中增加耗散性,WENO方法的表现优于Teukolsky方程式的高阶有限差分方法,这是Teukolsky方程式的标准化。特别是,由于WENO方案不使用其他耗散,因此非常适合需要长期演化的场景,例如对价格尾巴的研究和极端质量比二进制的重力波发射。在混合精液方法中,WENO重量的昂贵计算以降低的浮点精度进行,从而导致3.3的显着加速因子。此外,我们使用最先进的NVIDIA通用图形处理单元和群集并行性来进一步加速WENO计算。我们优化的WENO求解器可用于快速在黑洞和重力波物理领域中产生准确的显着性结果。我们将求解器应用于研究Aretakis电荷的行为 - 保守的数量,如果通过引力波观测站(例如Ligo/Pirgo)检测到,将证明存在极端黑洞的存在。

We develop and use a novel mixed-precision weighted essentially non-oscillatory (WENO) method for solving the Teukolsky equation, which arises when modeling perturbations of Kerr black holes. We show that WENO methods outperform higher-order finite-difference methods, standard in the discretization of the Teukolsky equation, due to the need to add dissipation for stability purposes in the latter. In particular, as the WENO scheme uses no additional dissipation it is well-suited for scenarios requiring long-time evolution such as the study of Price tails and gravitational wave emission from extreme mass ratio binaries. In the mixed-precision approach, the expensive computation of the WENO weights is performed in reduced floating-point precision that results in a significant speedup factor of 3.3. In addition, we use state-of-the-art Nvidia general-purpose graphics processing units and cluster parallelism to further accelerate the WENO computations. Our optimized WENO solver can be used to quickly generate accurate results of significance in the field of black hole and gravitational wave physics. We apply our solver to study the behavior of the Aretakis charge -- a conserved quantity, that if detected by a gravitational wave observatory like LIGO/Virgo would prove the existence of extremal black holes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源