论文标题

尖峰神经网络与神经形态硬件的热感知汇编

Thermal-Aware Compilation of Spiking Neural Networks to Neuromorphic Hardware

论文作者

Titirsha, Twisha, Das, Anup

论文摘要

神经形态计算的硬件实现可以显着提高使用尖峰神经网络(SNN)实施的机器学习任务的性能和能源效率,从而使这些硬件平台特别适合嵌入式系统和其他能源受限的环境。我们观察到,硬件的横杆中的长位线条和文字线在通过其突触元素传播时会产生明显的当前变化,通常使用非挥发性存储器(NVM)设计。这种当前的变化会在硬件的每个横杆内创建一个热梯度,具体取决于机器学习工作负载以及对这些横梁的神经元和突触的映射。 \ Mr {在缩放技术节点上,这种热梯度变得很重要,并且增加了硬件中的泄漏功率,从而增加了能耗。}我们提出了一种新型技术,以绘制基于SNN的机器学习工作负载的神经元和突触到神经形态硬件的神经元和突触。我们做出了两个新颖的贡献。首先,我们在神经形态硬件中制定了横杆的详细热模型,其中包含工作负载依赖性,其中计算了每个基于NVM的突触细胞的温度,考虑了其相邻细胞的热贡献。其次,我们将这种热模型纳入了使用爬山启发式的神经元和基于SNN的工作量的突触的映射中。目的是减少横杆中的热梯度。我们使用10个机器学习工作负载来评估神经元和突触映射技术,用于最先进的神经形态硬件。我们证明,与以性能为导向的SNN映射技术相比,硬件中每个横杆的平均温度平均降低了11.4k,导致泄漏功耗降低了52%(总能量消耗11%)。

Hardware implementation of neuromorphic computing can significantly improve performance and energy efficiency of machine learning tasks implemented with spiking neural networks (SNNs), making these hardware platforms particularly suitable for embedded systems and other energy-constrained environments. We observe that the long bitlines and wordlines in a crossbar of the hardware create significant current variations when propagating spikes through its synaptic elements, which are typically designed with non-volatile memory (NVM). Such current variations create a thermal gradient within each crossbar of the hardware, depending on the machine learning workload and the mapping of neurons and synapses of the workload to these crossbars. \mr{This thermal gradient becomes significant at scaled technology nodes and it increases the leakage power in the hardware leading to an increase in the energy consumption.} We propose a novel technique to map neurons and synapses of SNN-based machine learning workloads to neuromorphic hardware. We make two novel contributions. First, we formulate a detailed thermal model for a crossbar in a neuromorphic hardware incorporating workload dependency, where the temperature of each NVM-based synaptic cell is computed considering the thermal contributions from its neighboring cells. Second, we incorporate this thermal model in the mapping of neurons and synapses of SNN-based workloads using a hill-climbing heuristic. The objective is to reduce the thermal gradient in crossbars. We evaluate our neuron and synapse mapping technique using 10 machine learning workloads for a state-of-the-art neuromorphic hardware. We demonstrate an average 11.4K reduction in the average temperature of each crossbar in the hardware, leading to a 52% reduction in the leakage power consumption (11% lower total energy consumption) compared to a performance-oriented SNN mapping technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源