论文标题
单次数字分辨检测微波光子的检测,并通过错误缓解
Single-shot number-resolved detection of microwave photons with error mitigation
论文作者
论文摘要
单光子检测器是光子量子加密,通信和计算的普遍存在和整体组件。但是,许多应用不仅需要检测任何光子的存在,而且还需要以单次射击来区分存在的数字。在这里,我们在一个腔Qubition QED平台中实现了一个高达15微波光子的单发,高保真的光子数分检测器。该检测器通过测量一系列广义均衡算子来发挥作用,这些均衡算子构成光子数的二元分解中的位。我们的协议包括连续的,独立的测量方法,通过将Ancilla与空腔纠缠,然后读取并重置Ancilla。光子丢失和Ancilla读数错误可能会翻转一个或多个位,从而导致结果中的非平凡错误,但是这些错误具有可追溯的形式,可以在简单的隐藏Markov模型中捕获。依靠每个位测量的独立性,我们减轻了测量集合中的偏见,显示出与模型的预测良好的一致性。缓解措施将FOCK状态的平均总变化距离误差从$ 13.5 \%$ $ $ $ \%$ $。我们还表明,如果错误是独立且足够小的,则缓解措施可有效地扩展到$ m $ mmode系统。我们的工作激发了利用单发,高保真PNR探测器的新算法的发展。
Single-photon detectors are ubiquitous and integral components of photonic quantum cryptography, communication, and computation. Many applications, however, require not only detecting the presence of any photons, but distinguishing the number present with a single shot. Here, we implement a single-shot, high-fidelity photon number-resolving detector of up to 15 microwave photons in a cavity-qubit circuit QED platform. This detector functions by measuring a series of generalized parity operators which make up the bits in the binary decomposition of the photon number. Our protocol consists of successive, independent measurements of each bit by entangling the ancilla with the cavity, then reading out and resetting the ancilla. Photon loss and ancilla readout errors can flip one or more bits, causing nontrivial errors in the outcome, but these errors have a traceable form which can be captured in a simple hidden Markov model. Relying on the independence of each bit measurement, we mitigate biases in ensembles of measurements, showing good agreement with the predictions of the model. The mitigation improves the average total variation distance error of Fock states from $13.5\%$ to $1.1\%$. We also show that the mitigation is efficiently scalable to an $M$-mode system provided that the errors are independent and sufficiently small. Our work motivates the development of new algorithms that utilize single-shot, high-fidelity PNR detectors.