论文标题
在分区空间中针对第一分问题问题的总体方程式
Generalized master equation for first-passage problems in partitioned spaces
论文作者
论文摘要
由与细胞中分子转运相关的一系列生物应用的促进,我们提出了一个模块化框架,以治疗在分区空间中扩散的第一页问题问题。空间结构域在其扩散率,几何形状和维度方面可能会有所不同,但也可以指在扩散,驱动或异常运动之间交替的传输模式。该方法通过在域边界上的轨迹或运输方式变化时解剖轨迹来依赖于运动的粗粒度,从而产生一小部分状态。简化模型的时间演变遵循非马克维亚跳跃过程的广义主方程(GME); GME采用状态的职业概率和相应概率通量中的一组线性内部差异方程的形式。该模型的进一步构建块是部分第一键时间(FPT)密度,它编码每个域或状态中的传输行为。在多个域的一般框架的概述之后,该方法被示例并验证了一个目标搜索问题,其中有两个域和三维空间中的两个域,首先是通过精确地重现人为分裂的,均匀的空间的已知结果,第二,然后考虑具有不同扩散率的域的情况。 FPT密度的分析溶液在拉普拉斯结构域中给出,并通过数值反向转移量补充,在及时数十年中产生FPT密度,证实该空间的几何形状和异质性可以引入其他特征时间尺度。
Motivated by a range of biological applications related to the transport of molecules in cells, we present a modular framework to treat first-passage problems for diffusion in partitioned spaces. The spatial domains can differ with respect to their diffusivity, geometry, and dimensionality, but can also refer to transport modes alternating between diffusive, driven, or anomalous motion. The approach relies on a coarse-graining of the motion by dissecting the trajectories on domain boundaries or when the mode of transport changes, yielding a small set of states. The time evolution of the reduced model follows a generalized master equation (GME) for non-Markovian jump processes; the GME takes the form of a set of linear integro-differential equations in the occupation probabilities of the states and the corresponding probability fluxes. Further building blocks of the model are partial first-passage time (FPT) densities, which encode the transport behavior in each domain or state. After an outline of the general framework for multiple domains, the approach is exemplified and validated for a target search problem with two domains in one- and three-dimensional space, first by exactly reproducing known results for an artificially divided, homogeneous space, and second by considering the situation of domains with distinct diffusivities. Analytical solutions for the FPT densities are given in Laplace domain and are complemented by numerical backtransforms yielding FPT densities over many decades in time, confirming that the geometry and heterogeneity of the space can introduce additional characteristic time scales.