论文标题
二次残基的随机性参数
The stochasticity parameter of quadratic residues
论文作者
论文摘要
在V. I. Arnold之后,我们定义了$ \ Mathbb {Z}/M \ Mathbb {Z} $的子集$ u $的随机性参数$ s(u)$,是$ u $的元素之间连续距离的正方形的总和。在本文中,我们研究了集合$ r_m的二次残基$ m $ m $的随机性参数。我们提出了一种方法,该方法允许找到一组正密度的$ S(R_M)$的渐近学。特别是,我们获得以下两个推论。用$ s(k)= s(k,\ mathbb {z}/m \ mathbb {z})$ $ s(u \ subseteq \ subseteq \ subseteq \ subseteq \ subseteq \ subseteq \ mathbb {z}/m \ mathbb {z} $ k $ a $ k $的平均值$ s(u)$,$ s $ k $ a的$ k $ a $ k $ k $ k $ k $ k $ k $。令$ \ mathfrak {s}(r_m)= s(r_m)/s(| r_m |)$。我们表明a)$ \ varliminf_ {m \ to \ infty} \ mathfrak {s}(r_m)<1 <\ varlimsup_ {m \ to \ infty} \ infty} \ mathfrak {s s}(s}(r_m)$; b)集合$ \ {m \ in \ mathbb {n}:\ mathfrak {s}(r_m)<1 \} $具有较低的较低密度。
Following V. I. Arnold, we define the stochasticity parameter $S(U)$ of a subset $U$ of $\mathbb{Z}/M\mathbb{Z}$ to be the sum of squares of the consecutive distances between elements of $U$. In this paper we study the stochasticity parameter of the set $R_M$ of quadratic residues modulo $M$. We present a method which allows to find the asymptotics of $S(R_M)$ for a set of $M$ of positive density. In particular, we obtain the following two corollaries. Denote by $s(k)=s(k,\mathbb{Z}/M\mathbb{Z})$ the average value of $S(U)$ over all subsets $U\subseteq \mathbb{Z}/M\mathbb{Z}$ of size $k$, which can be thought of as the stochasticity parameter of a random set of size $k$. Let $\mathfrak{S}(R_M)=S(R_M)/s(|R_M|)$. We show that a) $\varliminf_{M\to\infty}\mathfrak{S}(R_M)<1<\varlimsup_{M\to\infty}\mathfrak{S}(R_M)$; b) the set $\{ M\in \mathbb{N}: \mathfrak{S}(R_M)<1 \}$ has positive lower density.