论文标题
量子蒙特卡罗研究拓扑阶段在贝纳卡萨尔 - 伯内维格·休斯模型的自旋类似物上
Quantum Monte Carlo study of topological phases on a spin analogue of Benalcazar-Bernevig-Hughes model
论文作者
论文摘要
我们根据使用大尺度量子蒙特卡洛模拟在二维中基于Benalcazar-Bernevig-Hughes模型的自旋类似物来研究高阶拓扑阶段。通过调谐二聚旋转耦合之间的比率,即弱和强交换耦合,可以揭示连续的néel价值固体量子相变。通过有限尺寸的缩放分析,我们确定相关点的相位临界点,因此,在相关参数空间中绘制了全相图。特别是,我们发现价键固相可以是一个高阶拓扑旋转相,它在整体中具有自旋激发的差距,同时在开放式晶格的角落展示了特征性的无间隙自旋模式。我们进一步讨论了高阶拓扑旋转阶段与电子相关的高阶相之间的联系,并发现它们俩都具有受高阶拓扑保护的无间隙旋转角模式。我们的结果例证了相关的自旋系统中的高阶物理,将有助于进一步理解多体高阶现象。
We study the higher-order topological spin phases based on a spin analogue of Benalcazar-Bernevig-Hughes model in two dimensions using large-scale quantum Monte Carlo simulations. A continuous Néel-valence bond solid quantum phase transition is revealed by tuning the ratio between dimerized spin couplings, namely, the weak and strong exchange couplings. Through the finite-size scaling analysis, we identify the phase critical points, and consequently, map out the full phase diagrams in related parameter spaces. Particularly, we find that the valence bond solid phase can be a higher-order topological spin phase, which has a gap for spin excitations in the bulk while demonstrates characteristic gapless spin modes at corners of open lattices. We further discuss the connection between the higher-order topological spin phases and the electronic correlated higher-order phases, and find both of them possess gapless spin corner modes that are protected by higher-order topology. Our result exemplifies higher-order physics in the correlated spin systems and will contribute to further understandings of the many-body higher-order topological phenomena.