论文标题
纠缠熵:非高斯州和强耦合
Entanglement Entropy: Non-Gaussian States and Strong Coupling
论文作者
论文摘要
在这项工作中,我们提供了一种研究非高斯州的纠缠熵的方法,该状态最小化了在任意耦合时相互作用的量子场理论的能量功能。为此,我们在确切的非线性规范转换的帮助下构建了一类非高斯变异试验波函数。这些变异\ emph {ansatze}显示的可计算性\ emph {bonanza}使我们能够使用自由理论的基态使用处方来计算纠缠熵。在自由理论中,纠缠熵由两点相关函数确定。对于相互作用的情况,我们表明这些两点相关器可以用其非扰动校正的对应物代替。在为一般互动模型提供了一些通用公式后,我们计算了2D中$ ϕ^4 $标量场理论的半空间和紧凑区域的纠缠熵。最后,我们在结果中分析了高阶相关器所播放的rol弹奏,并表明满足了强大的亚辅助性。
In this work we provide a method to study the entanglement entropy for non-Gaussian states that minimize the energy functional of interacting quantum field theories at arbitrary coupling. To this end, we build a class of non-Gaussian variational trial wavefunctionals with the help of exact nonlinear canonical transformations. The calculability \emph{bonanza} shown by these variational \emph{ansatze} allows us to compute the entanglement entropy using the prescription for the ground state of free theories. In free theories, the entanglement entropy is determined by the two-point correlation functions. For the interacting case, we show that these two-point correlators can be replaced by their nonperturbatively corrected counterparts. Upon giving some general formulae for general interacting models we calculate the entanglement entropy of half space and compact regions for the $ϕ^4$ scalar field theory in 2D. Finally, we analyze the rôle played by higher order correlators in our results and show that strong subadditivity is satisfied.