论文标题

语义变化检测不对称的暹罗网络

Semantic Change Detection with Asymmetric Siamese Networks

论文作者

Yang, Kunping, Xia, Gui-Song, Liu, Zicheng, Du, Bo, Yang, Wen, Pelillo, Marcello, Zhang, Liangpei

论文摘要

给定两个多时间航空图像,语义变化检测旨在定位土地覆盖的变化并通过像素方面的边界确定其变化类型。在许多与地球视觉相关的任务(例如精确的城市规划和自然资源管理)中,此问题至关重要。现有的最新算法主要通过在每个输入图像上应用均匀操作并比较提取的功能来识别更改的像素。但是,在变化的区域中,完全不同的土地覆盖分布通常需要每个输入的异质特征提取程序。在本文中,我们提出了一个不对称的暹罗网络(ASN),以通过从广泛不同结构的模块获得的特征对定位和识别语义变化,该模块涉及各种大小的区域并应用不同数量的参数以在不同土地覆盖分布的差异中考虑差异。为了更好地训练和评估我们的模型,我们创建了一个大规模的良好的语义变化检测数据集(第二),而自适应阈值学习(ATL)模块和分离的KAPPA(SEK)系数提出了减轻标签不平衡在模型培训和评估中的影响。实验结果表明,所提出的模型可以稳定地胜过具有不同编码器骨架的最先进算法。

Given two multi-temporal aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries. This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management. Existing state-of-the-art algorithms mainly identify the changed pixels by applying homogeneous operations on each input image and comparing the extracted features. However, in changed regions, totally different land-cover distributions often require heterogeneous features extraction procedures w.r.t each input. In this paper, we present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures, which involve areas of various sizes and apply different quantities of parameters to factor in the discrepancy across different land-cover distributions. To better train and evaluate our model, we create a large-scale well-annotated SEmantic Change detectiON Dataset (SECOND), while an Adaptive Threshold Learning (ATL) module and a Separated Kappa (SeK) coefficient are proposed to alleviate the influences of label imbalance in model training and evaluation. The experimental results demonstrate that the proposed model can stably outperform the state-of-the-art algorithms with different encoder backbones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源