论文标题

使用复发连接的编码器解码器对电机动力学进行建模

Modeling Electrical Motor Dynamics using Encoder-Decoder with Recurrent Skip Connection

论文作者

Verma, Sagar, Henwood, Nicolas, Castella, Marc, Malrait, Francois, Pesquet, Jean-Christophe

论文摘要

电动机是工业世界中最重要的机械能源。他们的建模传统上依赖于基于物理的方法,该方法旨在考虑其复杂的内部动力。在本文中,我们通过遵循数据驱动的方法来探讨对电动机的动力学建模的可行性,该方法仅使用其输入和输出,并且对其内部行为没有任何假设。我们提出了一种新颖的编码器架构,该体系结构受益于复发的跳过连接。我们还提出了一种新的损失功能,该功能考虑了电动机量的复杂性,并有助于避免模型偏置。我们表明,所提出的体系结构可以在我们的高频高频数据集上实现良好的学习表现。考虑了两个数据集:第一个数据集是使用基于感应电机物理的模拟器生成的,第二个数据集是从工业电动机记录的。我们使用传统神经网络(如馈电,卷积和经常性网络)的变体进行解决方案。我们评估建筑的各种设计选择,并将其与基线进行比较。我们通过在原始传感器数据上对模拟数据进行测试,显示了模型的域适应能力,可以从模拟数据中学习动态。最终,我们显示了信号复杂性对建模时间动力学的方法能力的影响。

Electrical motors are the most important source of mechanical energy in the industrial world. Their modeling traditionally relies on a physics-based approach, which aims at taking their complex internal dynamics into account. In this paper, we explore the feasibility of modeling the dynamics of an electrical motor by following a data-driven approach, which uses only its inputs and outputs and does not make any assumption on its internal behaviour. We propose a novel encoder-decoder architecture which benefits from recurrent skip connections. We also propose a novel loss function that takes into account the complexity of electrical motor quantities and helps in avoiding model bias. We show that the proposed architecture can achieve a good learning performance on our high-frequency high-variance datasets. Two datasets are considered: the first one is generated using a simulator based on the physics of an induction motor and the second one is recorded from an industrial electrical motor. We benchmark our solution using variants of traditional neural networks like feedforward, convolutional, and recurrent networks. We evaluate various design choices of our architecture and compare it to the baselines. We show the domain adaptation capability of our model to learn dynamics just from simulated data by testing it on the raw sensor data. We finally show the effect of signal complexity on the proposed method ability to model temporal dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源