论文标题

在财务应用中用于联合学习的差异私人安全多方计算

Differentially Private Secure Multi-Party Computation for Federated Learning in Financial Applications

论文作者

Byrd, David, Polychroniadou, Antigoni

论文摘要

联合学习使一群客户与受信任的服务器合作,可以协作学习共享的机器学习模型,同时将每个客户的数据保持在自己的本地系统中。这降低了暴露敏感数据的风险,但是仍然可以从通信的模型参数中反向工程有关客户端的私人数据集的信息。因此,大多数联合学习系统都使用差异隐私将噪声引入参数。这增加了任何试图揭示私人客户数据的尝试的不确定性,但也降低了共享模型的准确性,从而限制了隐私保护噪声的有用规模。系统可以通过包括安全的多方计算,进一步降低服务器恢复私有客户信息(而无需额外精确损失)的能力。结合两种技术的方法与金融公司尤其相关,因为它允许在不暴露敏感客户数据的情况下进行协作学习的新可能性。这可能会为重要任务提供更准确的模型,例如最佳贸易执行,信用来源或欺诈检测。本文的关键贡献是:我们向非专家的受众提供了一个保护隐私的联合学习协议,在现实世界中使用逻辑回归进行了对其进行证明,并使用开放源模拟平台对其进行评估,我们已经改编了我们为联邦学习系统开发的开发。

Federated Learning enables a population of clients, working with a trusted server, to collaboratively learn a shared machine learning model while keeping each client's data within its own local systems. This reduces the risk of exposing sensitive data, but it is still possible to reverse engineer information about a client's private data set from communicated model parameters. Most federated learning systems therefore use differential privacy to introduce noise to the parameters. This adds uncertainty to any attempt to reveal private client data, but also reduces the accuracy of the shared model, limiting the useful scale of privacy-preserving noise. A system can further reduce the coordinating server's ability to recover private client information, without additional accuracy loss, by also including secure multiparty computation. An approach combining both techniques is especially relevant to financial firms as it allows new possibilities for collaborative learning without exposing sensitive client data. This could produce more accurate models for important tasks like optimal trade execution, credit origination, or fraud detection. The key contributions of this paper are: We present a privacy-preserving federated learning protocol to a non-specialist audience, demonstrate it using logistic regression on a real-world credit card fraud data set, and evaluate it using an open-source simulation platform which we have adapted for the development of federated learning systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源